Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Virtual Exhaust-Gas Aftertreatment Test Bench - A Contribution to Model-Based Development and Calibration of Engine Control Algorithmsa

2012-04-16
2012-01-0897
Introducing new exhaust-gas aftertreatment concepts at mass production level places exacting demands on the overall development process - from defining process engineering to developing and calibrating appropriate control-unit algorithms. Strategies for operating and controlling exhaust-gas aftertreatment components, such as oxidation and selective catalytic reduction catalysts (DOC and SCR), diesel particulate filters (DPF) and SCR on DPF systems (SCR/DPF), have a major influence on meeting statutory exhaust-emission standards. Therefore it is not only necessary to consider the physical behavior of individual components in the powertrain but also the way in which they interact as the basis for ensuring efficient operation of the overall system.
Technical Paper

Variable Valve Timing in the new Mercedes-Benz Four-Valve Engines

1989-09-01
891990
The valve timing of internal-combustion engines usually represents a compromise with regard to the requirements placed on power output and torque. This paper describes the development of a system for variable valve timing, taking the new Mercedes-Benz 4-valve engines as an example. Gas exchange calculation and tests carried out on a modified 4-cylinder engine have demonstrated that with two intake valve times and one specified exhaust valve time virtually the best possible torque characteristics combined with high power output can be achieved. Intake valve timing is adjusted dependent on load and engine speed by turning the intake chamshaft using a hydraulic-mechanically acting camshaft adjuster, whose functional principles are described in detail.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

The Potential of Small DI-Diesel Engines with 250 cm3/Cylinder for Passenger Car Drive Trains

1997-02-24
970838
The demand for fuel-efficient, low-displacement engines for future passenger car applications led to investigations with small DI diesel engines in the advanced engineering department at Mercedes-Benz. Single-cylinder tests were carried out to compare a 2-valve concept with 241 cm3 displacement with a 422 cm3 4-valve design, both operated with a common rail injection system. Mean effective pressures at full load were about 10 % lower with the smaller displacement. With such engines a specific power of 40 kW/I and a specific torque of about 140 Nm/I should be possible. In the current stage of optimization, penalties in fuel economy could be reduced down to values below 3 %. The “4-cylinder DI diesel engine with 1 liter displacement” is an interesting alternative to small 3 cylinder concepts with higher displacement per cylinder. An introduction into series production will not only depend on the potential for further improvement in fuel economy of such small cylinder units.
Technical Paper

The New Mercedes-Benz Engine Brake with Decompression Valve

1992-02-01
920086
During the past few years, economy of commercial vehicles has increased considerably due to higher engine outputs a+ lower engine speeds together with enhanced fuel economy. However, the average speed of commercial vehicles is not only determined by the speed attainable on level ground and on uphill gradients, but also to a large extent by the speed attainable on downhill gradients, with the latter depending on the available constant braking power. Since the displacement of commercial vehicle engines has not been increased or has even become smaller, their braking power has increased only slightly ot not at all. In order to enhance the overall economy of commercial vehicles, it was therefore necessary to increase the engine braking performance as well since the wheel brakes cannot be used for constant braking and additional systems for continuous operation are very complex.
Technical Paper

The New 4-Valve 6 Cylinder 3,0 Liter Mercedes-Benz Diesel Engine for the Executive Class Passenger Vehicle

1993-10-01
932875
After the introduction of four-valve technology for gasoline powered passenger cars, Mercedes-Benz consistently developed this technology also for Diesel engines. Based on the proven success of the prechamber combustion system, this new Diesel engine generation, which includes 4, 5 and 6-cylinder naturally-aspirated engines, will be the first four-valve Diesel engines to be installed in passenger cars. The naturally aspirated 3.0 liter 6-cylinder in-line engine which represents the high end of this generation will be offered for sale in all 50 states of the USA in the Executive Class models starting on January 1, 1994. Four-valve technology allows the prechamber to be located centrally between the intake and exhaust valves which results in a major improvement of the combustion process. In addition, this 6-cylinder engine has a resonance intake system controlled by two butterfly valves to maximize the volumetric efficiency of the engine.
Technical Paper

The Mercedes-Benz Group C Engines for the World Sports Prototype Racing Championships 1989 and 1990

1992-02-01
920674
The M119 HL, a twin turbocharged V8-5 I-engine, was developed by Mercedes-Benz AG for Group C World Championship Race events based on the production engine used for the Mercedes-Benz passenger car range. * Due to the fuel consumption limitation for Group C-Cars - 51 litre/ 100 km - a high efficiency race engine was required to achieve the target fuel consumption during race events using a commercially available “pump” fuel. Given these restrictions, the latest version of the M119 HL-engine had a power output of 530 kW and minimum brake specific fuel consumption values of 235 - 260 g/kWh over the engine speed range. This paper discusses the conceptual ideas behind the design of such a high-performance engine with optimized fuel consumption, especially concerning turbocharging and engine management. Furthermore, the development of the engine's mechanical components is shown in comparison to the series production engine design.
Technical Paper

The Automated Shift Transmission (AST) - Possibilities and Limits in Production-Type Vehicles

2001-03-05
2001-01-0881
State-of-the-art powertrain concepts with automatic transmission must comply with increasingly stringent legislation on emissions and fuel consumption while fulfilling or surpassing customers' expectations as to driveability. In this respect, automated manual transmissions (AMT) and automated shift transmissions (AST) must compete with conventional automatic transmissions (AT) and continuously variable transmissions (CVT). In order to exploit the theoretical advantages of ASTs and put them into practice, complex ECU functions are needed to coordinate engine and transmission. Adaptive control, sophisticated clutch management and an intelligent shifting strategy allow shifting quality and shifting points to be simultaneously optimized to the effect that performance and comfort are increased while fuel consumption is reduced.
Technical Paper

Secondary Air Injection with a New Developed Electrical Blower for Reduced Exhaust Emissions

1994-03-01
940472
Secondary air injection after cold start gives two effects for reduced exhaust emissions: An exothermic reaction at the hot exhaust valves occurs, which increases the temperature of the exhaust gas. It gives sufficient air to the catalyst during the cold start fuel enrichment that is necessary to prevent driveability problems. Handicaps for the wide use of air injection include space constraints, weight and price. An electrical air blower was choosen to best satisfy all these requirements. The development steps are described. The result is a three stage radialblower with extremly high revolutions of about 18000 rpm. The system configuration and the outcome are demonstrated on the new C-Class of Mercedes-Benz. The results show emission reductions higher than 50 %, while also satisfying the development goals of noise, volume, weight and cost requirements.
Technical Paper

Scene Based Safety Functions for Pedestrian Detection Systems

2013-01-09
2013-26-0020
The protection of pedestrians from injuries by accidental collision is a primary focus of the automotive industry and of government legislation [1]. In this area, scientists and developers are faced with a multitude of requirements. Complex scenes are to be analyzed. The wide spectrum of where pedestrians and cyclists appear on the road, weather, and light conditions are just examples. Data fusion of raw or preprocessed signals for several sensors (cameras, radar, lidar, ultrasonic) need to be considered as well. Accordingly, algorithms are very complex. When moving from prototypic environments to embedded systems, additional constraints must be considered. Limited system resources drive the need to simplify and optimize for technical and economic reasons. With all these constraints, how can the safety functions be safe-guarded? This submission considers scene-based methods for the development of vehicle functions from prototype to series production focusing on functional safety.
Technical Paper

Potential of an Innovative, Fully Variable Valvetrain

2004-03-08
2004-01-1393
Under the persistent pressure to further reduce fuel consumption worldwide, it is necessary to advance the processes that influence the efficiency of gasoline engines. In doing so, harnessing the entire potential of fully variable mechanical valve trains will involve targeting efforts on optimizing all design parameters. A new type of valve timing system is used to portray thermodynamic and mechanical as well as electronic aspects of developing fully variable mechanical valve timing and lift systems
Technical Paper

Potential of Additional Mechanical Supercharging for Commercial Vehicle Engines

1994-11-01
942268
Modern commercial vehicle engines are equipped with turbocharging and intercooling. This results in low emissions and fuel consumption. In the lower speed and load range and under transient conditions, these engines have disadvantages, as the fuel injection rate has to be limited to avoid excessive smoke emission. Also, the engine braking performance of highly charged, small displacement engines is also lower than that of large displacement engines. Mercedes-Benz decided to develop a combination of turbocharger and mechanical supercharger. In the lower speed range higher torque levels are possible and maximum torque is available without any lag especially in the transient mode with low smoke emission and fuel consumption. Vehicle performance during acceleration can be improved by up to 30%. During engine braking operation, the mechanical supercharger is activated throughout the whole engine speed range which results in a distinctive increase in braking power.
Journal Article

Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System

2012-04-16
2012-01-1083
A physico-chemical model of a Cu-zeolite SCR/DPF-system involving NH₃ storage and SCR reactions as well as soot oxidation reactions with NO₂ has been developed and validated based on fundamental experimental investigations on synthetic gas test bench. The goal of the work was the quantitative modeling of NOx and NH₃ tailpipe emissions in transient test cycles in order to use the model for concept design analysis and the development of control strategies. Another focus was put on the impact of soot on SCR/DPF systems. In temperature-programmed desorption experiments, soot-loaded SCR/DPF filters showed a higher NH₃ storage capacity compared to soot-free samples. The measured effect was small, but could affect the NH₃ slip in vehicle applications. A bimodal desorption characteristic was measured for different adsorption temperatures and heating rates.
Technical Paper

Physical Modeling of Automotive Turbocharger Compressor: Analytical Approach and Validation

2011-09-13
2011-01-2214
Global warming is a climate phenomenon with world-wide ecological, economic and social impact which calls for strong measures in reducing automotive fuel consumption and thus CO2 emissions. In this regard, turbocharging and the associated designing of the air path of the engine are key technologies in elaborating more efficient and downsized engines. Engine performance simulation or development, parameterization and testing of model-based air path control strategies require adequate performance maps characterizing the working behavior of turbochargers. The working behavior is typically identified on test rig which is expensive in terms of costs and time required. Hence, the objective of the research project “virtual Exhaust Gas Turbocharger” (vEGTC) is an alternative approach which considers a physical modeled vEGTC to allow a founded prediction of efficiency, pressure rise as well as pressure losses of an arbitrary turbocharger with known geometry.
Technical Paper

On-Line Analysis of Individual Aromatic Hydrocarbons in Automotive Exhaust:Dealkylation of the Aromatic Hydrocarbons in the Catalytic Converter

1997-05-01
971606
The real-time concentrations of benzene, toluene, xylene, trimethyl-benzene and naphthalene in vehicle exhaust have been monitored during the FTP-cycle with a time-resolution of 20 ms and a sensitivity of 50 ppb. Using a laser mass spectrometer, the aromatic hydrocarbons in unconditioned exhaust gas at sampling positions behind the exhaust valve, before and behind the catalytic converter have been analyzed. The comparison of the emissions sampled before and behind the catalytic converter reveals the effect of dealkylation of the aromatic hydrocarbons in the catalytic converter. Whereas most of the aromatic hydrocarbons are burned in the hot catalytic converter, however, bursts of aromatic hydrocarbons are released at transient motor operation. In these moments, which can be attributed to phases of closed throttle valve and very low engine load at gear changes, a significant part of the C1-, C2- and C3- benzenes has been converted into benzene.
Technical Paper

Modeling of Close-Coupled SCR Concepts to Meet Future Cold Start Requirements for Heavy-Duty Engines

2019-04-02
2019-01-0984
The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system (ATS). Several different aftertreatment architectures and technologies, all based on selective catalytic reduction (SCR), are being considered to meet this need. One of these architectures, the close-coupled SCR (ccSCR), was evaluated in this study using two different physics-based, 1D models; the simulations focused on the first 300 seconds of the cold-start Federal Test Procedure (FTP). The first model, describing a real, EuroVI-compliant engine equipped with series turbochargers, was used to evaluate a ccSCR located either i) immediately downstream of the low-pressure turbine, ii) in between the two turbines, or iii) in a by-pass around the high pressure turbine.
Technical Paper

Modeling and Identification of a Gasoline Common Rail Injection System

2014-04-01
2014-01-0196
The precision of direct fuel injection systems of combustion engines is crucial for the further reduction of emissions and fuel consumption. It is influenced by the dynamic behavior of the fuel system, in particular the injection valves and the common rail pressure. As model based control strategies for the fuel system could substantially improve the dynamic behavior, an accurate model of the common rail injection system for gasoline engines - consisting of the main components high-pressure pump, common rail and injection valves - that could be used for control design is highly desirable. Approaches for developing such a model are presented in this paper. For each key component, two models are derived, which differ in temporal resolution and number of degrees of freedom. Experimental data is used to validate and compare the models. The data was generated on a test bench specifically designed and built for this purpose.
Technical Paper

Modeling Heavy-Duty Engine Thermal Management Technologies to Meet Future Cold Start Requirements

2019-04-02
2019-01-0731
The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system. Several different engine technologies are being considered to meet this need. In this study, a 1-D engine model was first used to evaluate several individual control strategies capable of increasing the exhaust enthalpy and decreasing the engine-out NOX over the initial portion of the cold start FTP cycle. The additional fuel consumption resulting from these strategies was also quantified with the model. Next, several of those strategies were combined to create a hypothetical aftertreatment warm-up mode for the engine. The model was then used to evaluate potential benefits of an air gap manifold (AGM) and two different turbine by-pass architectures. The detailed geometry of the AGM model was taken into account, having been constructed from a real prototype design.
Technical Paper

Model-Based Energy Consumption Optimization of a Twin Battery Concept Combining Liquid and Solid-State Electrolyte Cells

2023-08-28
2023-24-0154
The majority of powertrain types considered important contributors to achieving the CO2 targets in the transportation sector employ a battery as an energy storage device. The need for batteries is hence expected to grow drastically with increasing market share of CO2-optimized powertrain concepts. The resulting huge pressure on the development of future electrochemical energy storage systems necessitates the application of advanced methodologies enabling a fast and cost-efficient concept definition and optimization process. This paper presents a model-based methodology for the optimization of BEV thermal management concept layouts and operation strategies targeting minimized energy consumption. Starting at the vehicle level, the proposed methodology combines appropriate representations of all primary powertrain components with 1D cooling and refrigerant circuit models and focuses on their interaction with the battery chemistry.
Technical Paper

Model-Based Assessment of Hybrid Powertrain Solutions

2011-09-11
2011-24-0070
This paper shows the main results of a research activity carried out in order to investigate the impact of different hybridization concepts on vehicle fuel economy during standard homologation cycles (NEDC, FTP75, US Highway, Artemis). Comparative analysis between a standard passenger vehicle and three different hybrid solutions based on the same vehicle platform is presented. The following parallel hybrid powertrain solutions were investigated: Hybrid Electric Vehicle (HEV) solution (three different levels of hybridization are investigated with respect to different Electric Motor Generator size and battery storage/power capacity), High Speed Flywheel (HSF) system described as a fully integrated mechanical (kinetic) hybrid solution based on the quite innovative approach, and hydraulic hybrid system (HHV). In order to perform a fare analysis between different hybrid systems, analysis is also carried out for equal system storage capacities.
X