Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wear Protection Properties of Flexible Fuel Vehicle (FFV) Lubricants

1993-10-01
932791
A laboratory wear test is used to evaluate the wear protection properties of new and used engine oils formulated for FFV service. Laboratory-blended mixtures of these oils with methanol and water have also been tested. The test consists of a steel ball rotating against three polished cast iron discs. Oil samples are obtained at periodic intervals from a fleet of 3.0L Taurus vehicles operating under controlled go-stop conditions. To account for the effects of fuel dilution, some oils are tested before and after a stripping procedure to eliminate gasoline, methanol and other volatile components. In addition to TAN and TBN measurements, a capillary electrophoresis technique is used to evaluate the formate content in the oils. The results suggest that wear properties of used FFV lubricants change significantly with their degree of usage.
Technical Paper

Vehicle Closure Sound Quality

1995-05-01
951370
This paper describes an investigation into the sound quality of passenger car and light truck closure sounds. The closure sound events that were studied included side doors, hoods, trunklids, sliding doors, tailgates, liftgates, and fuel filler doors. Binaural recordings were made of the closure sounds and presented to evaluators. Both paired comparison of preference and semantic differential techniques were used to subjectively quantify the sound quality of the acoustic events. Major psychoacoustic characteristics were identified, and objective measures were then derived that were correlated to the subjective evaluation results. Regression analysis was used to formulate models which can quantify customers perceptions of the sounds based on the objectively derived parameters. Many times it was found that the peak loudness level was a primary factor affecting the subjective impression of component quality.
Technical Paper

Variables Influencing Shoulder Belt Positioning of Four Point Safety Belts

2001-03-05
2001-01-0382
The purpose of this study was to determine the optimal location of the shoulder belts for a suspender style four-point safety belt system. This optimal location must satisfy two conditions. First, the shoulder belts must properly fit over the occupant’s shoulders for safety performance. Second, the shoulder belts location on the occupant’s body must be acceptable to the occupant. To determine the optimal acceptable location of the shoulder belts, forty-four subjects were recruited by height and tested in a reconfigurable test seat. The results showed that avoiding an interaction between the shoulder belts and the occupant’s neck improved the acceptability of the system. Variables that affected this interaction included the horizontal and vertical position of the shoulder belts and the occupant’s weight, clothing, and gender.
Technical Paper

Variability of Hybrid III Clearance Dimensions within the FMVSS 208 and NCAP Vehicle Test Fleets and the Effects of Clearance Dimensions on Dummy Impact Responses

1995-11-01
952710
Locations of key body segments of Hybrid III dummies used in FMVSS 208 compliance tests and NCAP tests were measured and subjected to statistical analysis. Mean clearance dimensions and their standard deviations for selected body segments of driver and passenger occupants with respect to selected vehicle surfaces were determined for several classes of vehicles. These occupant locations were then investigated for correlation with impact responses measured in crash tests and by using a three dimensional human-dummy mathematical model in comparable settings. Based on these data, the importance of some of the clearance dimensions between the dummy and the vehicle surfaces was determined. The study also compares observed Hybrid III dummy positions within selected vehicles with real world occupant positions reported in published literature.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Validation and Enhancement of a Heavy Truck Simulation Model with an Electronic Stability Control Model

2010-04-12
2010-01-0104
Validation was performed on an existing heavy truck vehicle dynamics computer model with roll stability control (RSC). The first stage in this validation was to compare the response of the simulated tractor to that of the experimental tractor. By looking at the steady-state gains of the tractor, adjustments were made to the model to more closely match the experimental results. These adjustments included suspension and steering compliances, as well as auxiliary roll moment modifications. Once the validation of the truck tractor was completed for the current configuration, the existing 53-foot box trailer model was added to the vehicle model. The next stage in experimental validation for the current tractor-trailer model was to incorporate suspension compliances and modify the auxiliary roll stiffness to more closely model the experimental response of the vehicle. The final validation stage was to implement some minor modifications to the existing RSC model.
Technical Paper

Using CAE to Guide Passenger Airbag Door Design for Optimal Head Impact Performance

1997-02-24
970772
The increased focus on occupant protection by automobile manufacturers combined with incessant consumer demand for safety features such as dual airbags has posed design engineers with major challenges in the field of Instrument Panel (IP) design. Typically, airbags are designed to deploy when the speed of the automobile is above 13 mph in a frontal impact. The airbag door should meet head impact requirements for unbelted occupants involved in low speed impacts (<15mph) when airbags are not deployed. This paper describes how computer aided engineering (CAE) simulation techniques were used in improving the design of the passenger airbag door of a full size van for head impact performance. Fewer tests were conducted primarily for validation, which resulted in significantly less prototypes, costs and time.
Technical Paper

Underhood Thermal Management by Controlling Air Flow

1995-02-01
951013
A series of tests were conducted to determine the potential for reducing vehicle underhood temperatures by either 1) diverting the radiator fan air flow from the engine compartment or 2) by forced air cooling of the exhaust manifold in conjunction with shielding it or 3) by a combination of the two methods. The test vehicle was a Ford F-250 Light Truck with a 7.5L V-8 engine. The vehicle was tested in a dynamometer cell equipped with cell blowers to simulate road speed conditions. It was found that diverting the outlet air from the radiator will reduce underhood component temperatures when the vehicle is in motion and also at normal idle. However, if the vehicle is to be used for power takeoff applications requiring a “kicked” idle, then forced cooling of the exhaust manifolds is also required to maintain reduced underhood temperatures. A combination of these two techniques maximized the reduction of underhood temperatures for all operating conditions tested.
Technical Paper

Ultra-Long Life Oil-Free Supercharger for Fuel Cell and Hybrid Vehicle Power Trains

2013-04-08
2013-01-0478
Automotive hybrid electric vehicle applications require 1 million (or more) start-stops. This same level of start-stops is also required for hydrogen PEM fuel cell vehicles. In this investigation, a test regime is developed to stress the failure mode of a set of airfoil journal bearings caused by start-stops, and conceive a proper improvement to meet the requirement. Airfoil bearings have been limited by the number of start-stops due to their inherent wearout of coating(s) at low speed. A complete electronic air cathode compressor (electronic supercharger) assembly is tested, employing a pair of φ25 mm journal airfoil bearings. The foils have 34 μm of surface PTFE coating. After 50,000 start-stops, the coating is worn through. Next an improved system is tested, which has modified coating on the bearing journal surfaces. These bearings are examined roughly every 250,000 start-stops. After 1 million start-stops, the coating has worn 5 μm.
Technical Paper

Two Piece Composite Truck Cab

1990-02-01
900306
This report is a comprehensive investigation into the use of resin transfer molded glass fiber reinforced plastics in a structural application. A pickup truck cab structure is an ideal application for plastic composites. The cab is designed to fit a production Ranger pickup truck and uses carryover frame and front end structure. The cab concept consists primarily of two molded pieces. This design demonstrates extensive parts integration and allows for low-cost tooling, along with automated assembly.
Technical Paper

Transient Tire Properties

1974-02-01
740068
This paper identifies and analyzes steady-state and transient tire properties affecting vehicle directional response characteristics. The study is limited to the relationship between lateral force and slip angle. It shows fundamental differences between steady-state and transient properties. Tire transient properties are described by a force-slip angle loop with cornering stiffness and dynamic lateral force offset as parameters. Cornering stiffness is presented as a variable that changes with speed and steer rate. An interrelationship between cornering stiffness and dynamic lateral force offset resulting from the time lag between lateral force and slip angle is shown. Ramp steer techniques for measuring transient tire properties on a road trailer and on an external drum machine are described. A need for transient tire data for computer simulations of vehicle transient steer maneuvers is shown.
Technical Paper

Transient Heat Transfer of 42V Ni-MH Batteries for an HEV Application

2002-06-03
2002-01-1964
While a Ni-MH battery has good performance properties, such as a high power density and no memory effect, it needs a powerful thermal management system to maintain within the required narrow thermal operating range for the 42V HEV applications. Inappropriate battery temperatures result in degradation of the battery performance and life. For the battery cooling system, air is blown into the battery pack. The exhaust is then vented outside due to potential safety issues with battery emissions. This cooling strategy can significantly impact fuel economy and cabin climate control. This is particularly true when the battery is experiencing frequent charge and discharge of high-depths in extreme hot or cold weather conditions. To optimize performance and life of HEV traction batteries, the battery cooling design must keep the battery operation temperature below a maximum value and uniform across the battery cells.
Technical Paper

Tractor-Semitrailer Stability Following a Steer Axle Tire Blowout at Speed and Comparison to Computer Simulation Models

2013-04-08
2013-01-0795
This paper documents the vehicle response of a tractor-semitrailer following a sudden air loss (Blowout) in a steer axle tire while traveling at highway speeds. The study seeks to compare full-scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models. Full-scale testing of a tractor-semitrailer experiencing a sudden failure of a steer axle tire was conducted. Vehicle handling parameters were recorded by on-board computers leading up to and immediately following the sudden air loss. Inertial parameters (roll, yaw, pitch, and accelerations) were measured and recorded for the tractor and semitrailer, along with lateral and longitudinal speeds. Steering wheel angle was also recorded. These data are presented and also compared to the results of computer simulation models. The first simulation model, SImulation MOdel Non-linear (SIMON), is a vehicle dynamic simulation model within the Human Vehicle Environment (HVE) software environment.
Technical Paper

Thermal Durability Testing for Underbody Fibrous Heat Shields

1995-02-01
950620
The design and composition of heat shields is becoming a major factor in the design of future automobiles. The optimization of heat insulation materials is crucial in keeping size, mass, and cost to a minimum. The purpose of this paper is to describe the testing of four different fibrous insulating materials simulating 150,000 miles of the Underbody heat shielding that a light duty truck may experience. The materials were tested before and after the thermal durability experiment to show the degraded conduction performance of each sample.
Technical Paper

Theoretical Evaluation of the Requirements of the 1999 Advanced Airbag SNPRM – Part One: Design Space Constraint Analysis

2001-03-05
2001-01-0165
In the 1999 Supplemental Notice for Proposed Rulemaking (SNPRM) for Advanced Airbags, the National Highway Traffic Safety Administration (NHTSA) sought comments on the maximum speed at which the high-speed, unbelted occupant test suite will be conducted, i.e., 48 kph vs. 40 kph. To help address this question, an analysis of constraints was performed via extensive mathematical modeling of a theoretical restraint system. First, math models (correlated with several existing physical tests) were used to predict the occupant responses associated with 336 different theoretical dual-stage driver airbag designs subjected to six specific Regulated and non-Regulated tests.
Technical Paper

The New Ford Aeromax and Louisville Heavy Trucks: A Case Study in Applying Polar Plot Techniques to Vehicle Design

1995-11-01
952658
One of the major goals in the design of the new Ford Aeromax and Louisville heavy truck product line was to achieve competitive leadership in visibility. Market research found that visibility was an important issue to the heavy truck driver. Visibility is defined as both direct and indirect (i.e., the driver's ability to see with and without the use of supplemental vision devices such as mirrors) and both interior and exterior. The scope of this paper includes the work which was accomplished in evaluating direct and indirect exterior visibility and the resulting vehicle design which achieved Ford's leadership goals. Poor weather visibility and interior vision are beyond the scope of this paper. Polar Plots were the method of choice in the Aeromax/Louisville visibility studies. Industry acceptance of these techniques has been established in the recent approval of SAE J1750, “Evaluating the Truck Driver's Viewing Environment”.
Technical Paper

The New Ford 6.7L V-8 Turbocharged Diesel Engine

2010-04-12
2010-01-1101
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbocharged Diesel, and code named "Scorpion" has been designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. It incorporates the latest design technology to meet 2010 model year emission regulations for both chassis and dynamometer-based certifications, and is compatible with up to B20 biodiesel fuel. The engine is an entirely new 90 degree V-8 design featuring inboard exhaust, piezo common rail fuel injection, a new dual compressor wheel turbocharger, and dual loop cooling systems. The 6.7L is Ford's first diesel engine designed for the North American pickup and light commercial truck market.
Technical Paper

The Mvma Investigation Into the Complexities of Heavy Truck Splash and Spray Problem

1985-01-01
856097
Splash and spray conditions created by tractor-trailer combinations operating on the Federal highway system have been studied and tested for many years with mixed results. Past events are reviewed briefly in this paper. In additional testing during 1983, using new state-of- the-art splash/spray suppressant devices, some encouragement was provided that these devices could work. The 1984 Motor Vehicle Manufacturers Association (MVMA) test program was designed to develop practicable and reliable test procedures to measure effectiveness of splash and spray reduction methods applied to tractor-trailer combination vehicles. Over 40 different combinations of splash/spray suppression devices on five different tractors and three van trailer types were tested. The spray-cloud densities for some 400 test runs were measured by laser transmissometers and also recorded by still photography, motion pictures, and videotape. On-site observers made subjective ratings of spray density.
Technical Paper

The Microcomputer Based Engine Control System for the IIEC-2 Concept Car

1979-02-01
790508
The microcomputer based ignition timing, EGR and fuel injection control system for the IIEC-2 concept vehicle is described. The techniques used to compensate the fuel delivery for EGR, to minimize response time and to compensate for engine and injector non-uniformity are emphasized. These measures, in conjunction with limit cycle air/fuel ratio control utilizing feedback from an exhaust gas oxygen sensor, are examined with respect to the effect on three-way catalyst performance.
Technical Paper

The Future of the FREE-PISTON ENGINE in Commercial Vehicles

1958-01-01
580032
THIS paper describes the development and utilization of a new Ford free-piston power-plant, the model 519. Mr. Noren traces the development of the engine from the initial idea to the point where commercial utilization could be considered. Mr. Erwin describes one commercial use: in the Typhoon tractor. The ratio of size and weight to horsepower is favorable for farm tractors, being smaller and lighter than equivalent diesel engines. The performance of the tractor has been satisfactory thus far, operating smoothly and being practically vibration-free, with little noise. The advantages of the free-piston gasifier, as reported by the authors, are: flexibility, fuel economy, no need for auxiliary starting engine, economical manufacture of a wide range of engine sizes, adaptability to a wide range of fuels, and good torque characteristics.
X