Refine Your Search

Topic

Author

Search Results

Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
Technical Paper

Tempered Wire Fatigue Testing

2019-04-02
2019-01-0532
A new bench for the rotating bending fatigue tests of tempered steel wires is presented. The new bench is used to check the spring wire just before it is finally winded to realize a spring. The bench is basically a four-point bending machine. There are two main differences with respect to current bending machines. The first one is that the focus is on semi-finished components (more than 1 meter long), rather than standard small-scale specimens. The second one is that there is a non-linear configuration of the tested component due to its length. The bench design has provided some unreferenced features that make the bench quite accurate and effective in producing quick fatigue assessments. A rotor-dynamic study has allowed to perform tests at 50 Hz. As a preliminary application, some fatigue bending tests of tempered steel wires are described and discussed.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Novel Framework for the Robust Optimization of the Heat Flux Distribution for an Electro-Thermal Ice Protection System and Airfoil Performance Analysis

2023-06-15
2023-01-1392
We present a framework for the robust optimization of the heat flux distribution for an anti-ice electro-thermal ice protection system (AI-ETIPS) and iced airfoil performance analysis under uncertain conditions. The considered uncertainty regards a lack of knowledge concerning the characteristics of the cloud i.e. the liquid water content and the median volume diameter of water droplets, and the accuracy of measuring devices i.e., the static temperature probe, uncertain parameters are modeled as uniform random variables. A forward uncertainty propagation analysis is carried out using a Monte Carlo approach. The optimization framework relies on a gradient-free algorithm (Mesh Adaptive Direct Search) and three different problem formulations are considered in this work. Two bi-objective deterministic optimizations aim to minimize power consumption and either minimize ice formations or the iced airfoil drag coefficient.
Journal Article

NLMPC for Real Time Path Following and Collision Avoidance

2015-04-14
2015-01-0313
This paper presents a nonlinear control approach to achieve good performances in vehicle path following and collision avoidance when the vehicle is driving under cruise highway conditions. Nonlinear model predictive control (NLMPC) is adopted to achieve online trajectory control based on a simplified vehicle model. GMRES/Continuation algorithm is used to solve the online optimization problem. Simulations show that the proposed controller is capable of tracking the desired path as well as avoiding the obstacles.
Technical Paper

Multi-Physics Simulations of Ice Shedding from Wind Turbines

2023-06-15
2023-01-1479
Wind turbines in cold climates are likely to suffer from icing events, deteriorating the aerodynamic performances of the blades and decreasing their power output. Continuous ice accretion causes an increase in the ice mass and, consequently, in the centrifugal force to which the ice shape is subjected. This can result in the shedding of chunks of ice, which can jeopardize the aeroelastic properties of the blade and, most importantly, the safety of the surrounding people and of the wind turbine structure itself. In this work, ice shedding analysis is performed on a quasi-3D, multi-step ice geometry accreted on the NREL 5MW reference wind turbine. A preliminary investigation is performed by including the presence of an ice protection system to decrease the adhesion surface of the ice on the blade. A reference test case with a simple geometry is used as verification for the correct implementation of the procedure.
Technical Paper

Modeling of Pressure Wave Reflection from Open-Ends in I.C.E. Duct Systems

2010-04-12
2010-01-1051
In the most elementary treatment of plane-wave reflection at the open end of a duct system, it is often assumed that the ends are pressure nodes. This implies that pressure is assumed as a constant at the open end termination and that steady flow boundary condition is supposed as instantaneously established. While this simplifying assumption seems reasonable, it does not consider any radiation of acoustic energy from the duct into the surrounding free space; hence, an error in the estimation of the effects of the flow on the acoustical response of an open-end duct occurs. If radiation is accounted, a complicated three-dimensional wave pattern near the duct end is established, which tends to readjust the exit pressure to its steady-flow level. This adjustment process is continually modified by further incident waves, so that the effective instantaneous boundary conditions which determine the reflected waves depend on the flow history.
Journal Article

Model-Based Wheel Torque and Backlash Estimation for Drivability Control

2017-03-28
2017-01-1111
To improve torque management algorithms for drivability, the powertrain controller must be able to compensate for the nonlinear dynamics of the driveline. In particular, the presence of backlash in the transmission and drive shafts excites sharp torque fluctuations during tip-in or tip-out transients, leading to a deterioration of the vehicle drivability and NVH. This paper proposes a model-based estimator that predicts the wheel torque in an automotive drivetrain, accounting for the effects of backlash and drive shaft flexibility. The starting point of this work is a control-oriented model of the transmission and vehicle drivetrain dynamics that predicts the wheel torque during tip-in and tip-out transients at fixed gear. The estimator is based upon a switching structure that combines a Kalman Filter and an open-loop prediction based on the developed model.
Technical Paper

Lightweight Seat Design and Crash Simulations

2015-04-14
2015-01-1472
The lightweight seat of a high performance car is designed taking into account a rear impact, i.e. the crash due to an impulse applied from the rear. The basic parameters of the seat structure are derived resorting to simulations of a crash with a test dummy positioned on the seat. The simulations provide the forces acting at the seat structure, in particular the forces applied at the joint between the seat cushion and the seat backrest are taken into account. Such a joint is simulated as a plastic hinge and dissipates some of the crash energy. The simulations are validated by means of indoor tests with satisfactory results. A tool has been developed for the preliminary design of lightweight seats for high performance cars.
Technical Paper

Lightweight Design and Construction of Aluminum Wheels

2016-04-05
2016-01-1575
In this paper the lightweight design and construction of road vehicle aluminum wheels is dealt with, referring particularly to safety. Dedicated experimental tests aimed at assessing the fatigue life behavior of aluminum alloy A356 - T6 have been performed. Cylindrical specimens have been extracted from three different locations in the wheel. Fully reversed strain-controlled and load-controlled fatigue tests have been performed and the stress/strain-life curves on the three areas of the wheel have been computed and compared. The constant amplitude rotary bending fatigue test of the wheel has been simulated by means of Finite Element method. The FE model has been validated by measuring the strain at several points of the wheel during the actual test. From the FE model, the stress tensor time history on the whole wheel over a loading cycle has been extracted.
Technical Paper

Investigation of the Influence of Aero-Thermal Non-equilibrium Conditions of an SLD Cloud on Airfoil Icing

2023-06-15
2023-01-1406
This study examines the impact of slip in aero-thermal conditions of supercooled large droplets (SLD) produced in an Icing Wind Tunnel (IWT) on the ice accretion characteristics. The study identifies potential biases in the SLD model development based on IWT data and numerical predictions that assume the SLD to be in aerothermal equilibrium with the IWT airflow. To obtain realistic temperature and velocity data for each droplet size class in the test section of the Braunschweig Icing Wind Tunnel (BIWT), a Lagrangian droplet tracking solver was used within a Monte Carlo framework. Results showed that SLDs experience considerable slips in velocity and temperature due to their higher inertia and short residence time in the Braunschweig IWT. Large droplets were found to be warmer and slower than the flow in the test section, with larger droplets experiencing larger aerothermal slips.
Technical Paper

Integrated Vehicle and Driveline Modeling

2007-04-16
2007-01-1583
In the last years automotive industry has shown a growing interest in exploring the field of vehicle dynamic control, improving handling performances and safety of the vehicle, and actuating devices able to optimize the driving torque distribution to the wheels. These techniques are defined as torque vectoring. The potentiality of these systems relies on the strong coupling between longitudinal and lateral vehicle dynamics established by tires and powertrain. Due to this fact the detailed (and correct) simulation of the dynamic behaviour of the driveline has a strong importance in the development of these control systems, which aim is to optimize the contact forces distribution. The aim of this work is to build an integrated vehicle and powertrain model in order to provide a proper instrument to be used in the development of such systems, able to reproduce the dynamic interaction between vehicle and driveline and its effects on the handling performances.
Technical Paper

Influence of Iron and Manganese on the Mechanical Properties and Microstructure of a Recycled EN AC-43200 Aluminium-Silicon Alloy

2023-11-05
2023-01-1880
The work investigates the effect of different Iron and Manganese contents in ad-hoc cast specimens made from recycled EN AC-43200 alloy. Tensile tests and metallographic analyses coupled with energy dispersive X-ray spectroscopy measurements are carried out to elucidate the interplay between the microstructure and the quasi-static properties of the Aluminium-Silicon alloy under investigation. A strong correlation between the composition and morphology of Fe/Mn -based intermetallic precipitates and tensile properties is demonstrated. Moreover, it is found that specific intermetallic phases are present only for certain, relative and/or absolute contents of Fe and Mn.
Technical Paper

Industry 4.0 and Automotive 4.0: Challenges and Opportunities for Designing New Vehicle Components for Automated and/or Electric Vehicles

2019-04-02
2019-01-0504
The paper deals with the “wise sensorization” of vehicle components. In the upcoming full digitalization of mobility, vehicle components are getting more and more sensorized. The problem is why, what, when and where vehicle components can be sensorized. The paper attempts a preliminary problem statement for the sensorization of vehicle components. A theoretical basic investigation is introduced, setting the main concepts on which extended sensorization is advisable or not. The paradigms of Industry 4.0 and Automotive 4.0 are addressed, namely sensors are proposed to be used both for monitoring the manufacturing process and for monitoring the service life of the component. In general, sensors are proposed to be used for multiple purposes. Two examples of sensorized components are briefly presented. One refers to a sensorized electric motor, the other one refers to a sensorized wheel.
Technical Paper

Heat Transfer Analysis of Catalytic Converters during Cold Starts

2019-09-09
2019-24-0163
The transient heat transfer behavior of an automotive catalytic converter has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO oxidation, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters are the results of data in literature tuned by experiments. Simplified cases of constant flow rates and gas temperatures in the catalyst inflow have been chosen for a comprehensive analysis of the heat and mass transfer phenomena. The impact of inlet flow temperatures and inlet flow rates on the heat up characteristics as well as in the CO emissions have been quantified. A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinates are introduced.
Journal Article

Friction Estimation at Tire-Ground Contact

2015-04-14
2015-01-1594
The friction estimation at the tire-ground contact is crucial for the active safety of vehicles. Friction estimation is a key problem of vehicle dynamics and the ultimate solution is still unknown. However the proposed approach, based on a simple idea and on a simple hardware, provides an actual solution. The idea is to compare the tire characteristic at a given friction (nominal characteristic) with the actual characteristic that the tire has while running. The comparison among these two characteristics (the nominal one and the actual one) gives the desired friction coefficient. The friction coefficient is expressed in vector form and a number of running parameters are identified. The mentioned comparison is an efficient but complex algorithm based on a mathematical formulation of the tire characteristic. The actual tire characteristic is somehow measured in real time by a relatively simple smart wheel which is able to detect the three forces and the three moments acting at the hub.
Journal Article

Electric Motor for Brakes – Optimal Design

2020-04-14
2020-01-0919
A multi-objective optimal design of a brushless DC electric motor for a brake system application is presented. Fifteen design variables are considered for the definition of the stator and rotor geometry, pole pieces and permanent magnets included. Target performance indices (peak torque, efficiency, rotor mass and inertia) are defined together with design constraints that refer to components stress levels and temperature thresholds, not to be surpassed after heavy duty cycles. The mathematical models used for optimization refer to electromagnetic field and related currents computation, to thermo-fluid dynamic simulation, to local stress and vibration assessment. An Artificial Neural Network model, trained with an iterative procedure, is employed for global approximation purposes. This allows to reduce the number of simulation runs needed to find the optimal configurations. Some of the Pareto-optimal solutions resulting from the optimal design process are analysed.
Technical Paper

Effects of In-Cylinder Flow Structures on Soot Formation and Oxidation in a Swirl-Supported Light-Duty Diesel Engine

2019-09-09
2019-24-0009
In this paper, computation fluid dynamics (CFD) simulations are performed to describe the effect of in-cylinder flow structures on the formation and oxidation of soot in a swirl-supported light-duty diesel engine. The focus of the paper is on the effect of swirl motion and injection pressure on late cycle soot oxidation. The structure of the flow at different swirl numbers is studied to investigate the effect of varying swirl number on the coherent flow structures. These coherent flow structures are studied to understand the mechanism that leads to efficient soot oxidation in late cycle. Effect of varying injection pressure at different swirl numbers and the interaction between spray and swirl motions are discussed. The complexity of diesel combustion, especially when soot and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution.
Technical Paper

Dynamic Tests of Racing Seats and Simulation with Vedyac Code

1998-11-16
983059
Dynamic tests have been performed on carbon fiber racing seats following the FIA regulations. The tests have shown, in rear impact tests, a relatively strong rebound leading to large forward bending of neck, and, in side impact tests, very large lateral displacement of the head, the latter protruding dangerously towards hard portions of the car structure. Stiffening the seat back by steel struts results in reducing strongly both the motion and the acceleration of the head. Simulations of the dynamics of the tests have been done with multi-body models, including the Hybrid III dummy and seat deflection, by means of the program VEDYAC. It has been found that computer simulation can predict very accurately the result of a test, provided the numerical models have been carefully calibrated to match the dummy tolerance bands. Once they have been calibrated and validated with a number of tests, the computer models can be very useful to extend the test results to different test conditions.
Technical Paper

Dynamic Substructuring for Sources Contributions Analysis in Internal Combustion Engines

2016-06-15
2016-01-1761
For vibration and acoustics vehicle development, one of the main challenges is the identification and the analysis of the noise sources, which is required in order to increase the driving comfort and to meet the stringent legislative requirements for the vehicle noise emission. Transfer Path Analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. This technique is commonly applied on test measurements, based on prototypes, at the end of the design process. In order to apply such methodology already within the design process, a contribution analysis method based on dynamic substructuring of a multibody system is proposed with the aim of improving the quality of the design process for vehicle NVH assessment and to shorten development time and cost.
X