Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Weak Supervised Hierarchical Place Recognition with VLAD-Based Descriptor

2022-12-22
2022-01-7099
Visual Place Recognition (VPR) excels at providing a good location prior for autonomous vehicles to initialize the map-based visual SLAM system, especially when the environment changes after a long term. Condition change and viewpoint change, which influences features extracted from images, are two of the major challenges in recognizing a visited place. Existing VPR methods focus on developing the robustness of global feature to address them but ignore the benefits that local feature can auxiliarily offer. Therefore, we introduce a novel hierarchical place recognition method with both global and local features deriving from homologous VLAD to improve the VPR performance. Our model is weak supervised by GPS label and we design a fine-tuning strategy with a coupled triplet loss to make the model more suitable for extracting local features.
Technical Paper

Vehicle Dynamics, Stability and Control

2014-04-01
2014-01-0134
In the last years the number of electronic controllers of vehicle dynamics applied to chassis components has increased dramatically. They use lookup table of the primary order vehicle global parameters as yaw rate, lateral acceleration, steering angle, car velocity, that define the ideal behavior of the vehicle. They are usually based on PID controllers which compare the actual behavior of every measured real vehicle data to the desired behavior, from look up table. The controller attempts to keep the measured quantities the same as the tabled quantities by using ESP, TC (brakes and throttle), CDC (control shocks absorbers), EDIFF(active differential) and 4WS (rear wheels active toe). The performances of these controls are good but not perfect. The improvement can be achieved by replacement of the lookup tables with a fast vehicle model running in parallel to the real vehicle.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Technical Paper

Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics

2019-09-09
2019-24-0088
Detailed and fast combustion models are necessary to support design of Diesel engines with low emission and fuel consumption. Over the years, the importance of turbulence chemistry interaction to correctly describe the diffusion flame structure was demonstrated by a detailed assessment with optical data from constant-volume vessel experiments. The main objective of this work is to carry out an extensive validation of two different combustion models which are suitable for the simulation of Diesel engine combustion. The first one is the Representative Interactive Flamelet model (RIF) employing direct chemistry integration. A single flamelet formulation is generally used to reduce the computational time but this aspect limits the capability to reproduce the flame stabilization process. To overcome such limitation, a second model called tabulated flamelet progress variable (TFPV) is tested in this work.
Technical Paper

Unmanned Terminal Vehicle Positioning System Based on Roadside Single-Line Lidar

2021-03-02
2021-01-5029
With the development of economic globalization, the speed of development of container terminals is also very rapid. Under the pressure brought by the surge in throughput, the unmanned and intelligent terminals will become the future development direction of terminals. As the cornerstone of the unmanned terminal, the positioning technology provides the most basic position information for system scheduling, path planning, real-time correction, and loading and unloading. Therefore, this paper is aimed to design a low-cost, high-precision, and easy-to-maintain unmanned dock positioning system in order to better solve the problem of unmanned dock positioning. The main research content of this paper is to design a positioning algorithm for unmanned terminal Automated Guided Vehicle (AGV) based on single-line lidar, including point cloud data acquisition, background filtering, point cloud clustering, vehicle position extraction, and result optimization.
Technical Paper

Transient Thermal Behavior of Dry Clutch under Non-Uniform Pressure Condition

2020-04-14
2020-01-1418
Accuracy of heat flux models is critical to clutch design in case of excessive temperatures due to large amounts of friction heat generated in the narrow space. Pressure distribution on the clutch friction interface is an important factor affecting heat flux distribution, thus affecting temperature distribution. In this paper, an experiment is conducted to obtain the pressure distribution for one typical dry clutch equipped with a set of diaphragm spring. Considering that the frictional interface is in contact, this study makes use of pressure sensitive film and acquires data based on image processing techniques. Then a polynomial mathematical model with dimensionless parameters is developed to fit the pressure distribution on the friction disc. After that, the proposed pressure model is applied to a thermal model based on finite element method. In addition, two conventional thermal models (i.e., uniform heat flux model and uniform pressure model), are implemented for comparison.
Journal Article

Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines

2014-04-01
2014-01-1144
Detailed chemistry and turbulence-chemistry interaction need to be properly taken into account for a realistic combustion simulation of IC engines where advanced combustion modes, multiple injections and stratified combustion involve a wide range of combustion regimes and require a proper description of several phenomena such as auto-ignition, flame stabilization, diffusive combustion and lean premixed flame propagation. To this end, different approaches are applied and the most used ones rely on the well-stirred reactor or flamelet assumption. However, well-mixed models do not describe correctly flame structure, while unsteady flamelet models cannot easily predict premixed flame propagation and triple flames. A possible alternative for them is represented by transported probability density functions (PDF) methods, which have been applied widely and effectively for modeling turbulent reacting flows under a wide range of combustion regimes.
Journal Article

Towards the LES Simulation of IC Engines with Parallel Topologically Changing Meshes

2013-04-08
2013-01-1096
The implementation and the combination of advanced boundary conditions and subgrid scale models for Large Eddy Simulation (LES) in the multi-dimensional open-source CFD code OpenFOAM® are presented. The goal is to perform reliable cold flow LES simulations in complex geometries, such as in the cylinders of internal combustion engines. The implementation of a boundary condition for synthetic turbulence generation upstream of the valve port and of the compressible formulation of the Wall-Adapting Local Eddy-viscosity sgs model (WALE) is described. The WALE model is based on the square of the velocity gradient tensor and it accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations and it recovers the proper y₃ near-wall scaling for the eddy viscosity without requiring dynamic procedure; hence, it is supposed to be a very reliable model for ICE simulation.
Technical Paper

Towards H2 High-Performance IC Engines: Strategies for Control and Abatement of Pollutant Emissions

2023-08-28
2023-24-0108
In future decarbonized scenarios, hydrogen is widely considered as one of the best alternative fuels for internal combustion engines, allowing to achieve zero CO2 emissions at the tailpipe. However, NOx emissions represent the predominant pollutants and their production has to be controlled. In this work different strategies for the control and abatement of pollutant emissions on a H2-fueled high-performance V8 twin turbo 3.9L IC engine are tested. The characterization of pollutant production on a single-cylinder configuration is carried out by means of the 1D code Gasdyn, considering lean and homogeneous conditions. The NOx are extremely low in lean conditions with respect to the emissions legislation limits, while the maximum mass flow rate remains below the turbocharger technical constraint limit at λ=1 only.
Journal Article

Tire Ply-Steer, Conicity and Rolling Resistance - Analytical Formulae for Accurate Assessment of Vehicle Performance during Straight Running

2019-04-02
2019-01-1237
The aim of the paper is to provide simple and accurate analytical formulae describing the straight motion of a road vehicle. Such formulae can be used to compute either the steering torque or the additional rolling resistance induced by vehicle side-slip angle. The paper introduces a revised formulation of the Handling Diagram Theory to take into account tire ply-steer, conicity and road banking. Pacejka’s Handling Diagram Theory is based on a relatively simple fully non-linear single track model. We will refer to the linear part of the Handling Diagram, since straight motion will be considered only. Both the elastokinematics of suspension system and tire characteristics are taken into account. The validation of the analytical expressions has been performed both theoretically and after a subjective-objective test campaign. By means of the new and unreferenced analytical formulae, practical hints are given to set to zero the steering torque during straight running.
Journal Article

Theoretical and Experimental Ride Comfort Assessment of a Subject Seated into a Car

2010-04-12
2010-01-0777
A comprehensive research is presented aiming at assessing the ride comfort of subjects seated into road or off-road vehicles. Although many papers and books have appeared in the literature, many issues on ride comfort are still to be understood, in particular, the paper investigates the mutual effects of the posture and the vibration caused mostly from road unevenness. The paper is divided into two parts. In the first part, a mathematical model of a seated subject is validated by means of actual measurements on human subjects riding on a car. Such measurements refer to the accelerations acting at the subject/seat interface (vertical acceleration at the seat cushion and horizontal acceleration at the seat back). A proper dummy is used to derive the seat stiffness and damping.
Technical Paper

The Nozzle Flows and Atomization Characteristics of the Two-Component Surrogate Fuel of Diesel from Indirect Coal Liquefaction at Engine Conditions

2018-09-10
2018-01-1691
Recently, all world countries facing the stringent emission regulations have been encouraged to explore the clean fuel. The diesel from indirect coal liquefaction (DICL) has been verified that can reduce the soot and NOx emissions of compression-ignition engine. However, the atomization characteristics of DICL are rarely studied. The aim of this work is to numerically analyze the inner nozzle flow and the atomization characteristics of the DICL and compare the global and local flow characteristics of the DICL with the NO.2 diesel (D2) at engine conditions. A surrogate fuel of the DICL (a mixture of 72.4% n-dodecane and 27.6% methylcyclohexane by mass) was built according to its components to simulate the atomization characteristics of the DICL under the high-temperature and high-pressure environment (non-reacting) by the Large Eddy Simulation (LES).
Technical Paper

The Effects of Injection Strategies on Particulate Emissions from a Dual-Injection Gasoline Engine

2019-01-15
2019-01-0055
European standards have set stringent PN (particle number) regulation (6×1011 #/km) for gasoline direct injection (GDI) engine, posing a great challenge for the particulate emission control of GDI engines. Dual-injection, which combines direct-injection (DI) with port-fuel-injection (PFI), is an effective approach to reduce particle emissions of GDI engine while maintaining good efficiency and power output. In order to investigate the PN emission characteristics under different dual-injection strategies, a DMS500 fast particle spectrometer was employed to characterize the effects of injection strategies on particulates emissions from a dual-injection gasoline engine. In this study, the injection strategies include injection timing, injection ratio and injection pressure of direct-injection.
Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
Technical Paper

System Characteristics of Direct and Secondary Loop Heat Pump for Electrical Vehicles

2018-04-03
2018-01-0063
The electricity energy consumption for passenger cabin heating can drastically shorten the driving range for electric vehicles in cold climates. Mobile heat pump system is considered as an effective method to improve heating efficiency. This study investigates the system characteristics of mobile heat pump systems for electrical vehicle application. Based on KULI thermal management software, simulation models including HFC-R134a direct heat pump (DHP) and secondary loop heat pump (SLHP) were developed. The secondary loop employed in the SLHP includes a coolant pump, an indoor heater core and a plate heat exchanger, instead of an indoor condenser in the DHP. The use of a secondary loop has advantages to improve air outlet temperature uniformity. The simulation models were verified by measured data obtained from calorimeter experiments. By adopting simulation models, the effects of indoor and outdoor temperatures on system performance and cycle characteristics were discussed.
Technical Paper

Study on the Optimal Control Strategy of Transient Process for Diesel Engine with Sequential Turbocharging System

2016-10-17
2016-01-2157
Three-phase sequential turbocharging system with two unequal-size turbochargers is developed to improve fuel economy performance and reduce emission of the automotive diesel engine, which satisfies wide range of intake flow demand. However, it results in complicated transient control strategies under frequently changing operating conditions. The present work aims to optimize the control scheme of boost system and fuel injection and evaluate their contributions to the improvement of transient performance. A mean value model for diesel engine was built up in SIMULINK environment and verified by experiment for transient study. Then a mathematical model of optimization issue was established. Strategies of control valves and fuel injection for typical acceleration and loading processes are obtained by coupled calculating of the simulation model and optimization algorithm.
Journal Article

Study on Vehicle Stability Control by Using Model Predictive Controller and Tire-road Force Robust Optimal Allocation

2015-04-14
2015-01-1580
The vehicle chassis integrated control system can improve the stability of vehicles under extreme conditions using tire force allocation algorithm, in which, the nonlinearity and uncertainty of tire-road contact condition need to be taken into consideration. Thus, An MPC (Model Predictive Control) controller is designed to obtain the additional steering angle and the additional yaw moment. By using a robust optimal allocation algorithm, the additional yaw moment is allocated to the slip ratios of four wheels. An SMC (Sliding-Mode Control) controller is designed to maintain the desired slip ratio of each wheel. Finally, the control performance is verified in MATLAB-CarSim co-simulation environment with open-loop manoeuvers.
Technical Paper

Study of Load Distribution for a Semi - Tracked Air - Cushion Vehicle

1999-09-14
1999-01-2788
A new design method is proposed for a semi-tracked air-cushion vehicle for soft terrain by using a flexible bind, which offers more flexibility in designing. This paper describes the design principle focusing on optimizing the total power consumption of the vehicle. The relationships of load distribution and power consumption are analyzed. The prototype experiments showed that the proposed design can meet the demand of tractive and transport efficiency with its optimal state of using minimum total power consumption and meanwhile maintaining ride comfort.
Technical Paper

Study of Flash Boiling Spray Combustion in a Spark Ignition Direct Injection Optical Engine Using Digital Image Processing Diagnostics

2019-04-02
2019-01-0252
Flash boiling spray has been proven to be a useful method in providing finer fuel droplet and stronger evaporation in favor of creating a homogeneous fuel-air mixture. Combustion characteristics of flash boiling spray are thus valuable to be investigated systematically for aiding the development of efficient internal combustion system. An experimental study of flash boiling spray combustion in a SIDI optical engine under early injection has been conducted. The fuel, Iso-octane, was used across all tests. Three fuel spray conditions experimented in the study: normal liquid, transitional flash boiling and flare flash boiling sprays, within each case that Pa/Ps ratio was set in (>1), (0.3~1), and (<0.3) respectively. A small quartz insert on the piston enables optical access for observing combustion process; non-intrusive measurements on flame radicals has been carried out using a high-speed color camera.
Journal Article

Simulations of Advanced Combustion Modes Using Detailed Chemistry Combined with Tabulation and Mechanism Reduction Techniques

2012-04-16
2012-01-0145
Multi-dimensional models represent today consolidated tools to simulate the combustion process in HCCI and diesel engines. Various approaches are available for this purpose, it is however widely accepted that detailed chemistry represents a fundamental prerequisite to obtain satisfactory results when the engine runs with complex injection strategies or advanced combustion modes. Yet, integrating such mechanisms generally results in prohibitive computational cost. This paper presents a comprehensive methodology for fast and efficient simulations of combustion in internal combustion engines using detailed chemistry. For this purpose, techniques to tabulate the species reaction rates and to reduce the chemical mechanisms on the fly have been coupled.
X