Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

The Relationships of Diesel Fuel Properties, Chemistry, and HCCI Engine Performance as Determined by Principal Components Analysis

2007-10-29
2007-01-4059
In order to meet common fuel specifications such as cetane number and volatility, a refinery must blend a number of refinery stocks derived from various process units in the refinery. Fuel chemistry can be significantly altered in meeting fuel specifications. Additionally, fuel specifications are seldom changed in isolation, and the drive to meet one specification may alter other specifications. Homogeneous charge compression ignition (HCCI) engines depend on the kinetic behavior of a fuel to achieve reliable ignition and are expected to be more dependent on fuel specifications and chemistry than today's conventional engines. Regression analysis can help in determining the underlying relationships between fuel specifications, chemistry, and engine performance. Principal Component Analysis (PCA) is used as an adjunct to regression analysis in this work, because of its ability to deal with co-linear variables and potential to uncover ‘hidden’ relationships between the variables.
Technical Paper

The Chemistry, Properties, and HCCI Combustion Behavior of Refinery Streams Derived from Canadian Oil Sands Crude

2008-10-06
2008-01-2406
Diesel fuels derived from different types of crude oil can exhibit different chemistry while still meeting market requirements and specifications. Oil sands derived fuels typically contain a larger proportion of cycloparaffinic compounds, which result from the cracking and hydrotreating of bitumens in the crude. In the current study, 17 refinery streams consisting of finished fuels and process streams were obtained from a refinery using 100% oil sands derived crude oil. All samples except one met the ULSD standard of 15 ppm sulfur. The samples were characterized for properties and chemistry and run in a simple premixed HCCI engine using intake heating for combustion phasing control. Results indicate that the streams could be equally well characterized by chemistry or properties, and some simple correlations are presented. Cetane number was found to relate mainly to mono-aromatic content and the cycloparaffins did not appear to possess any unique diesel related chemical effects.
Technical Paper

Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine

2009-11-02
2009-01-2645
The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC).
Technical Paper

Numerical Investigation to Fuel Injection Strategy and Thermal Condition Impacts on GCI Combustion at Low and Medium Loads Using CFD

2021-09-21
2021-01-1155
This research numerically investigated the combustion process and exhaust emissions from a light-duty Gasoline Compression Ignition (GCI) engine operating at low load as well as medium load conditions using a commercial computational fluid dynamic (CFD) software Converge. The fuel injection strategies and thermal boundary conditions effects were examined to produce locally stratified and globally lean partially premixed compression ignition (PPCI) combustion. The effects of fuel injection pressure, number of injections, and the quantity of fuel injected in each pulse were examined and optimized for emissions and fuel consumption (FC) under the design constraints of 180 bar peak cylinder pressure (PCP) and 10 bar/° CA maximum pressure rise rate (MPRR).
Journal Article

Investigation of Negative Valve Overlap Reforming Products Using Gas Sampling and Single-Zone Modeling

2015-04-14
2015-01-0818
Negative valve overlap (NVO) is a viable control strategy that enables low-temperature gasoline combustion (LTGC) at low loads. Thermal effects of NVO fueling on main combustion are well understood, but fuel reforming chemistry during NVO has not been extensively studied. The objective of this work is to analyze the impact of global equivalence ratio and available oxidizer on NVO product concentrations. Experiments were performed in a LTGC single-cylinder engine under a sweep of NVO oxygen concentration and NVO fueling rates. Gas sampling at the start and end of the NVO period was performed via a custom dump-valve apparatus with detailed sample speciation by gas chromatography. Single-zone reactor models using detailed chemistry at relevant mixing and thermodynamic conditions were used in parallel to the experiments to evaluate expected yields of partially oxidized species under representative engine time scales.
Technical Paper

Experimental and Statistical Comparison of Engine Response as a Function of Fuel Chemistry and Properties in CI and HCCI Engines

2012-04-16
2012-01-0857
Knowledge of how fuel chemistry and properties affect engine response is necessary for effective engine control. It may also be possible to tailor fuels to specific combustion modes, engine geometries, or for desired outputs to generate lower emissions and/or higher IMEP and efficiency. Fuel chemistry and properties have different effects on engine performance in CI and HCCI combustion. In this study, experiments were performed using a 517cc Hatz single-cylinder diesel engine and the same engine converted to run in HCCI mode, both equipped with advanced combustion analysis equipment. Engine performance results were modeled statistically with respect to fuel properties, operating parameters, and engine type to determine the extent to which fuel characteristics influence engine response, and how the response differs between the two combustion modes. Experiments were performed using 16 fuels: ULSD, 9 FACE diesel fuels, and 6 P20 blends of unprocessed plant oils.
Technical Paper

Characterization of Particulate Matter Emissions from Heavy-Duty Partially Premixed Compression Ignition with Gasoline-Range Fuels

2019-04-02
2019-01-1185
In this study, the compression ratio of a commercial 15L heavy-duty diesel engine was lowered and a split injection strategy was developed to promote partially premixed compression ignition (PPCI) combustion. Various low reactivity gasoline-range fuels were compared with ultra-low-sulfur diesel fuel (ULSD) for steady-state engine performance and emissions. Specially, particulate matter (PM) emissions were examined for their mass, size and number concentrations, and further characterized by organic/elemental carbon analysis, chemical speciation and thermogravimetric analysis. As more fuel-efficient PPCI combustion was promoted, a slight reduction in fuel consumption was observed for all gasoline-range fuels, which also had higher heating values than ULSD. Since mixing-controlled combustion dominated the latter part of the combustion process, hydrocarbon (HC) and carbon monoxide (CO) emissions were only slightly increased with the gasoline-range fuels.
Journal Article

Analysis of Thermal and Chemical Effects on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

2015-09-06
2015-24-2451
A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate.
X