Refine Your Search

Topic

Search Results

Technical Paper

Tumble Vortex Characterization by Complex Moments

2018-04-03
2018-01-0207
Rotating flow inside an internal combustion engine cylinder is deliberately engineered for improved fuel-air mixing and combustion. The details of the rotating flow structure vary temporally over an engine cycle as well as cyclically at the same engine phase. Algorithms in the literature to identify these structural details of the rotating flow invariably focus on locating its center and, on occasion, measuring its rotational strength and spatial extent. In this paper, these flow structure parameters are evaluated by means of complex moments, which have been adapted from image (scalar field) recognition applications to two-dimensional flow pattern (vector field) analysis. Several additional detailed characteristics of the rotating flow pattern - the type and extent of its deviation from the ideal circular pattern, its rotational and reflectional symmetry (if exists), and thus its orientation - are also shown to be related to the first few low-order complex moments of the flow pattern.
Technical Paper

The Nozzle Flows and Atomization Characteristics of the Two-Component Surrogate Fuel of Diesel from Indirect Coal Liquefaction at Engine Conditions

2018-09-10
2018-01-1691
Recently, all world countries facing the stringent emission regulations have been encouraged to explore the clean fuel. The diesel from indirect coal liquefaction (DICL) has been verified that can reduce the soot and NOx emissions of compression-ignition engine. However, the atomization characteristics of DICL are rarely studied. The aim of this work is to numerically analyze the inner nozzle flow and the atomization characteristics of the DICL and compare the global and local flow characteristics of the DICL with the NO.2 diesel (D2) at engine conditions. A surrogate fuel of the DICL (a mixture of 72.4% n-dodecane and 27.6% methylcyclohexane by mass) was built according to its components to simulate the atomization characteristics of the DICL under the high-temperature and high-pressure environment (non-reacting) by the Large Eddy Simulation (LES).
Technical Paper

The Effects of Injection Strategies on Particulate Emissions from a Dual-Injection Gasoline Engine

2019-01-15
2019-01-0055
European standards have set stringent PN (particle number) regulation (6×1011 #/km) for gasoline direct injection (GDI) engine, posing a great challenge for the particulate emission control of GDI engines. Dual-injection, which combines direct-injection (DI) with port-fuel-injection (PFI), is an effective approach to reduce particle emissions of GDI engine while maintaining good efficiency and power output. In order to investigate the PN emission characteristics under different dual-injection strategies, a DMS500 fast particle spectrometer was employed to characterize the effects of injection strategies on particulates emissions from a dual-injection gasoline engine. In this study, the injection strategies include injection timing, injection ratio and injection pressure of direct-injection.
Technical Paper

System Characteristics of Direct and Secondary Loop Heat Pump for Electrical Vehicles

2018-04-03
2018-01-0063
The electricity energy consumption for passenger cabin heating can drastically shorten the driving range for electric vehicles in cold climates. Mobile heat pump system is considered as an effective method to improve heating efficiency. This study investigates the system characteristics of mobile heat pump systems for electrical vehicle application. Based on KULI thermal management software, simulation models including HFC-R134a direct heat pump (DHP) and secondary loop heat pump (SLHP) were developed. The secondary loop employed in the SLHP includes a coolant pump, an indoor heater core and a plate heat exchanger, instead of an indoor condenser in the DHP. The use of a secondary loop has advantages to improve air outlet temperature uniformity. The simulation models were verified by measured data obtained from calorimeter experiments. By adopting simulation models, the effects of indoor and outdoor temperatures on system performance and cycle characteristics were discussed.
Technical Paper

Study on the Optimal Control Strategy of Transient Process for Diesel Engine with Sequential Turbocharging System

2016-10-17
2016-01-2157
Three-phase sequential turbocharging system with two unequal-size turbochargers is developed to improve fuel economy performance and reduce emission of the automotive diesel engine, which satisfies wide range of intake flow demand. However, it results in complicated transient control strategies under frequently changing operating conditions. The present work aims to optimize the control scheme of boost system and fuel injection and evaluate their contributions to the improvement of transient performance. A mean value model for diesel engine was built up in SIMULINK environment and verified by experiment for transient study. Then a mathematical model of optimization issue was established. Strategies of control valves and fuel injection for typical acceleration and loading processes are obtained by coupled calculating of the simulation model and optimization algorithm.
Technical Paper

Study of Load Distribution for a Semi - Tracked Air - Cushion Vehicle

1999-09-14
1999-01-2788
A new design method is proposed for a semi-tracked air-cushion vehicle for soft terrain by using a flexible bind, which offers more flexibility in designing. This paper describes the design principle focusing on optimizing the total power consumption of the vehicle. The relationships of load distribution and power consumption are analyzed. The prototype experiments showed that the proposed design can meet the demand of tractive and transport efficiency with its optimal state of using minimum total power consumption and meanwhile maintaining ride comfort.
Technical Paper

Study of Flash Boiling Spray Combustion in a Spark Ignition Direct Injection Optical Engine Using Digital Image Processing Diagnostics

2019-04-02
2019-01-0252
Flash boiling spray has been proven to be a useful method in providing finer fuel droplet and stronger evaporation in favor of creating a homogeneous fuel-air mixture. Combustion characteristics of flash boiling spray are thus valuable to be investigated systematically for aiding the development of efficient internal combustion system. An experimental study of flash boiling spray combustion in a SIDI optical engine under early injection has been conducted. The fuel, Iso-octane, was used across all tests. Three fuel spray conditions experimented in the study: normal liquid, transitional flash boiling and flare flash boiling sprays, within each case that Pa/Ps ratio was set in (>1), (0.3~1), and (<0.3) respectively. A small quartz insert on the piston enables optical access for observing combustion process; non-intrusive measurements on flame radicals has been carried out using a high-speed color camera.
Technical Paper

Self-Tuning PID Design for Slip Control of Wedge Clutches

2017-03-28
2017-01-1112
The wedge clutch takes advantages of small actuation force/torque, space-saving and energy-saving. However, big challenge arises from the varying self-reinforced ratio due to the varying friction coefficient inevitably affected by temperature and wear. In order to improve the smoothness and synchronization time of the slipping process of the wedge clutch, this paper proposes a self-tuning PID controller based on Lyapunov principle. A new Lyapunov function is developed for the wedge clutch system. Simulation results show that the self-tuning PID obtains much less error than the conventional PID with fixed gains. Moreover, the self-tuning PID is more adaptable to the variation of the friction coefficient for the error is about 1/5 of the conventional PID.
Technical Paper

Research of the High Altitude Control Strategy of the Piston Aero-engine Using Two-stage Turbocharger Coupled with single Supercharging System

2019-12-19
2019-01-2211
Aiming at the high altitude operation problems for piston-type aero-engines and to improve the practical ceiling and high altitude dynamic performance, this thesis analyzes a controllable three-stage composite supercharging system, using a two-stage turbocharger coupled supercharger method. The GT-Power simulation model of a four-cylinder boxer engine was established, and the control strategy of variable flight height was obtained. The simulation research of engine performance from 0 to 20,000 meters above sea level has been carried out, which shows that the engine power is at the same level as the plain condition, and it could still maintain 85.28 percent of power even at the height of 20,000 meters, which meets the flight requirements of the aircraft.
Technical Paper

Research into Autoignition Characteristics of Diesel Fuel in a Controllable Active Thermo-Atmosphere

2006-04-03
2006-01-0073
A novel method is applied to analysis the autoignition phenomenon. Experiments on the study of autoignition characteristics of diesel fuel were carried out with a Controllable Active Thermo-Atmosphere Combustor. The results show that the method for autoignition studying of liquid fuel is of feasibility. Autoignition delay time and autoignition height from the nozzle increase with the coflow temperature decreasing and autoignition delay time changes sensitively under lower coflow temperature. Liftoff height of diesel spray flame decreases with the increasing of coflow temperature. Lower temperature causes higher variance of liftoff height. It might be speculated that there are two different mechanisms of flame stabilization that the lower lift-off heights flames are related to a balance between the flow velocity and flame speed while the higher lift-off heights flames are stabilized by the mixture autoignition.
Journal Article

Pitch Control for a Semi-track Air-cushion Vehicle Based on Optimal Power Consumption

2009-04-20
2009-01-1225
A new kind of integrated semi-track air-cushion pitch controller is proposed in this paper. The controller first compute the target working point based on a weighed function, which is the combination of optimal power consumption and pitch angle control demand. Then the sequential quadratic programming algorithm distributes the general target values to specific control values. The performance of the controller is verified through co-simulation between Matlab/Simulink and ADAMS/View. The simulation results show the effectiveness of the control algorithm and the correctness of the choice in physical configuration with two air cushions for vehicle body pitch control.
Technical Paper

Partial Premixing Effects on the Evolution of Soot Morphology and Nanostructure in Co-Flow Flames of a Biodiesel Surrogate

2017-10-08
2017-01-2397
Biodiesel is a potential alternative fuel which can meet the growing need for sustainable energy. Partially premixed compression ignition (PPCI) is an important low-temperature combustion strategy to reduce NOx and soot emission of diesel engines. To investigate partial premixing impact on particle formation in flames of biodiesel or biodiesel surrogates, an experimental study was performed to compare the soot morphology and nanostructure evolution in laminar co-flow methyl decanoate non-premixed flame (NPF) and partially premixed flame (PPF). The thermophoretic sampling technique was used to capture particles along flame centerlines. Soot morphology information and volume fraction were obtained from TEM analysis and nanostructure features were evaluated by HR-TEM. With primary equivalence ratio of 19, gas temperature of PPF is higher along flame centerline compared with NPF. The results show an initially stronger sooting tendency in PPF at lower positions.
Technical Paper

One Better Model of Vehicle Turbocharged Diesel Engine than VNT Turbo

2014-04-01
2014-01-1644
In the internal combustion engine, about 25%-40% of the energy released by burned fuel is taken away by the exhaust gas. The part of the usable energy in the exhaust can be used in the turbocharged engine. So, at present, turbocharged diesel engine hasn't made full use of exhaust gas energy. The authors propose a model of the 4-stroke turbocharged diesel engine of split exhausting system. Adding a rapidly on-and-off exhaust control valve between exhaust passage and manifold in the 4-stroke turbocharged diesel engine can improve the utilization rate of the usable energy in the exhaust. By utilizing the mean effective pressure (MEP), this paper is to calculate the maximum usable energy, the energy provided by exhaust and the energy required by intake. The results gets that the new type of exhausting system can help engine to increase usage rate of the exhaust gas energy to around 20% at the rated condition compared to the existing vehicle diesel engines with VNT.
Technical Paper

Numerical Investigation of the Effects of Port Water Injection Timing on Performance and Emissions in a Gasoline Direct Injection Engine

2020-04-14
2020-01-0287
Port water injection is considered as a promising strategy to further improve the combustion performance of internal combustion engines for its benefit in knock resistance by reducing the cylinder temperature. A thorough investigation of the port water injection technique is required to fully understand its effects on the engine combustion process. This study explores the potential of the port water injection technique in improving the performance of a turbo charged Gasoline Direct Injection engine. A 3D computational fluid dynamics model is applied to simulate the in-cylinder mixing and combustion for this engine both with and without water injection. Different water injection timings are investigated and it is found that the injection timing greatly effects the mass of water which enters the combustion chamber, both in liquid and vapor form.
Technical Paper

Multi-Objective Tolerance Optimization Considering Friction Loss for Internal Combustion Engines

2017-03-28
2017-01-0250
Manufacturing of the internal combustion engines (ICEs) has very critical requirements on the precision and tolerance of engine parts in order to guarantee the engine performance. As a typical complex nonlinear system, small changes in dimensions of ICE components may have great impact on the performance and cost of the manufacturing of ICES. In this regard, it is still necessary to discuss the optimization of the tolerance and manufacturing precision of the critical components of ICEs even though the tolerance optimization in general has been reported in the literature. A systematic process for determining optimal tolerances will overcome the disadvantages of the traditional experience-based tolerance design and therefore improve the system performance.
Technical Paper

Measurement of Temperature and Soot (KL) Distributions in Spray Flames of Diesel-Butanol Blends by Two-Color Method Using High-Speed RGB Video Camera

2016-10-17
2016-01-2190
Taking advantages of high speed RGB video cameras, the two-color method can be implemented with a relatively simple setup to obtain the temporal development of the two dimensional temperature and soot (KL) distributions in a reacting diesel jet. However, several issues such as the selection of the two wavelengths, the role of bandpass filters, and the proper optical settings, etc. should be known to obtain a reliable measurement. This paper, at first, discusses about the uncertainties in the measurement of temperature and KL distributions in the diesel flame by the two-color method using the high speed RGB video camera. Since n-butanol, as an alternative renewable fuel, has the potential application in diesel engines, the characteristic of spray combustion of diesel-butanol blends under the diesel-like ambient conditions in a pre-burning constant-volume combustion chamber is studied.
Technical Paper

Matching Optimum for Low HC and CO Emissions at Warm-up Phase in an LPG EFI Small SI Engine

2005-10-24
2005-01-3897
Based on a 125cm3 single cylinder SI engine, the designated idle speed was controlled by adjusting of cycle ignition advance angle. By analyzing the effects of different idle speed and throttle open position on three way catalyst (TWC) light-off time and conversion efficiency of HC and CO emissions, combined with the corresponding total HC and CO emissions level, the optimum idle speed and throttle open position at engine's warm-up phase were found by the matching optimum. The present method for engine control strategy is helpful to optimize the warm-up phase emission levels in SI engine with LPG fuel.
Technical Paper

Life Cycle Land Requirement, Energy Consumption and GHG Emissions of Biodiesel Derived from Microalgae and Jatropha curcas Seeds in China

2014-04-01
2014-01-1964
The aim of this study is to evaluate the land requirement, energy consumption and GHG (greenhouse gases) emissions of microalgal biodiesel (M-BD) and Jatropha curcas seeds (J-BD) based biodiesel from the perspective of life cycle assessment (LCA). Mass and energy balance was used through the whole LCA calculation for each process. Two types of biodiesel (100% biodiesel: BD100, and 20% blends of biodiesel: BD20) were assumed to be combusted in the suitable diesel engine. Displacement method was adopted to measure the co-products credits. The results showed that the land requirement of producing 1 kg biodiesel from microalgae was about 1/31 of that from Jatropha curcas seeds. The well to pump (WTP) stage for microalgal biodiesel had higher fossil energy requirement but lower petroleum energy consumption and GHG emissions compared to Jatropha curcas and conventional diesel (CD). The WTP energy efficiency for J-BD100 and M-BD 100 were 26% and 17.4%, respectively.
Technical Paper

Investigation of the Impacts of Spark Plug Orientation on Combustion Stability under Lean SI Operation

2020-04-14
2020-01-1121
The increasingly stringent restrictions on vehicle emissions and fuel consumption are driving the development of gasoline engines towards lean combustion. Increasing ignition energy has been considered an effective way to achieve lean operation conditions. To further improve the lean limit of engine combustion, the influence of the spark plug orientation on the combustion stability under lean operation should be explored. In this investigation, the original machine spark plug orientation, 90 degrees clockwise rotation, and 180 degrees clockwise rotation are studied to analyze the impact of spark plug orientation. The combustion experiment was carried out under the condition of low excess air ratio of the original machine and high excess air ratio with a 450 mA high energy ignition.
Technical Paper

Influence of Port Water Injection on the Combustion Characteristics and Exhaust Emissions in a Spark-Ignition Direct-Injection Engine

2020-04-14
2020-01-0294
It is well known that engine downsizing is still the main energy-saving technology for spark-ignition direct-injection (SIDI) engine. However, with the continuous increase of the boosting ratio, the gasoline engine is often accompanied by the occurrence of knocking, which has the drawback to run the engine at retarded combustion phasing. Besides, in order to protect the turbine blades from being sintered by high exhaust temperature, the strategies of fuel enrichment are often taken to reduce the combustion temperature, which ultimately leads to a high level of particulate number emission. Therefore, to address the issues discussed above, the port water injection (PWI) techniques on a 1.2-L turbocharged, three-cylinder, SIDI engine were investigated. Measurements indicate that the optimization of spark timing has a significant impact on its performance.
X