Refine Your Search

Topic

Search Results

Technical Paper

Some Problems in Reliability Estimation

1964-01-01
640564
This paper is concerned with a series of three important problems on reliability where complete solutions are still unavailable. These problems have all been researched and approximate solutions are outlined. The three areas of interest are 1. The government requirement of assurance of high reliability of complex items where the cost of sampling is extremely high. 2. Confidence intervals for a system in series where component data are available, and 3. Estimation of the parameters of the Weibull distribution when sampling terminates after the rth failure is observed in a sample of size n.
Technical Paper

Simultaneous Measurement of In-Cylinder Temperature and Residual Gas Concentration in the Vicinity of the Spark Plug by Wavelength Modulation Infrared Absorption

2007-04-16
2007-01-0639
This paper presents a new measurement technique for in-cylinder gas temperature and residual gas concentration during the compression stroke of an internal combustion (IC) engine. This technique is based on the infrared absorption of water vapor by a wavelength modulated laser. Wavelength modulation spectroscopy with second harmonic detection (WMS-2f) was adopted to enable the short-path measurements over a wide range of temperatures and pressures corresponding to the late compression stroke in a typical automotive engine. The WMS-2f signal is detected through a bandpass filter at a width of 7.5 kHz, enabling crank angle-resolved measurements. The temperature is determined from the ratio of optical absorption for two overtone transitions of water vapor in the intake gas mixture, and the H2O concentration is determined from this inferred temperature and the absorption for one of the transitions.
Technical Paper

Shortcuts in Cumulative Damage Analysis

1973-02-01
730565
The paper presents a method for shorter evaluation of the fatigue damage done by an irregular sequence of loads. The method looks first for the largest overall range from highest peak to lowest valley, then for the next largest overall range that interrupts the first range, and so on, down until a suitable fraction (for example, 10%) of all reversals have been used. These few reversals form a short history, which will do substantially the same damage as the total history. The process is applied to three long histories selected by the SAE Fatigue Design and Evaluation Committee. The sensitivity of calculated damage to the omission of smaller ranges is computed for plain and for notched specimens. The error is compared with differences produced by different current rules for evaluating damage, by different cycle counting methods, and by smooth specimen simulation of notched parts.
Technical Paper

Sensitivity Study on Thermal and Soot Oxidation Dynamics of Gasoline Particulate Filters

2019-04-02
2019-01-0990
Gasoline particulate filters (GPFs) are devices used to filter soot emitted by gasoline direct injection (GDI) engines. A numerical model for a ceria-coated GPF presented in a previous paper by H. Arunachalam et al. in 2017 was developed to predict internal temperature and soot amount combusted during regeneration events. Being that both the internal temperature and the accumulated soot cannot be directly measured during real-time operation and owing to their critical importance for GPF health monitoring as well as regeneration scheduling, the above model turns out to be a valuable tool for OBD applications. In this paper, we first conduct a stochastic analysis to understand the relation between the model parameters and the initial value of the ceria (IV) oxide volume fraction, as a deterministic value for such a state is not known.
Technical Paper

Sensitivity Analysis of a Mean-Value Exergy-Based Internal Combustion Engine Model

2022-03-29
2022-01-0356
In this work, we conduct a sensitivity analysis of the mean-value internal combustion engine exergy-based model, recently developed by the authors, with respect to different driving cycles, ambient temperatures, and exhaust gas recirculation rates. Such an analysis allows to assess how driving conditions and environment affect the exergetic behavior of the engine, providing insights on the system’s inefficiency. Specifically, the work is carried out for a military series hybrid electric vehicle.
Technical Paper

Realizing Stoichiometric, Natural Gas-Fueled Combustion in Diesel Engines

2018-04-03
2018-01-1148
For high-load applications, natural gas represents a clean burning, readily available, and relatively inexpensive alternative to number 2 Diesel fuel. However, the fuel’s poor ignitability has previously limited implementation to spark ignited and dual-fueled engines. These approaches suffer from reduced peak load and high engine-out particulate emissions, respectively, requiring lean operation and expensive aftertreatment to meet regulatory standards. A high-temperature combustion strategy can overcome the difficult ignitibility, allowing for true Diesel-style combustion of pure methane-the least ignitable and least sooting component of natural gas. In order to achieve this result, a compression system was designed to supply fuel at pressures suitably high to achieve good mixing and short injection durations, and a solenoid-actuated Diesel fuel injector was modified to function at these pressures with a gaseous fuel.
Technical Paper

Predictions of Cumulative Fatigue Damage Using Condensed Load Histories

1975-02-01
750045
This paper presents predictions of fatigue crack initiation life for three distinctly different, irregular load histories, each applied to keyhole-notched compact tension specimens at several maximum load levels and using two different structural steels. Work leading to this paper was done in conjunction with the cooperative research program of the SAE Fatigue Design and Evaluation Committee. Three computerized prediction methods (Landgraf, Wetzel, and a Nominal Stress Range approach) are used. All predictions are based on load histories condensed to 10% of their original number of reversals by the “Racetrack Method.” This method, which is described in detail, selects the most damaging overall ranges in an irregular load history while preserving the sequence of the original loading. Predictions are compared with test data for the two dozen combinations of loading type and level and steel used. Comments are made on the relative merits of the different prediction methods.
Technical Paper

Numerical Investigation of Unburnt Hydrocarbon Emissions in a Homogeneous-Charge Late-Injection Diesel-Fueled Engine

2008-06-23
2008-01-1666
Strict NOx and soot emission regulations for Diesel engines have created an interest in low-temperature partially-homogeneous combustion regimes in both the US and Europe. One strategy, Homogeneous-Charge Late-Injection (HCLI) combustion utilizes 55% or more cooled external Exhaust Gas Recirculation (EGR) with a single Direct Injection strategy to control ignition timing. These engines are operated at low temperatures to ensure near zero NOx emissions, implying that fuel in the thermal boundary layers will not reach sufficient temperature to fully oxidize, resulting in Unburnt Hydrocarbon (UHC) and CO emissions. Of particular interest to HCLI engines are the UHC's that are not fully oxidized by the Diesel Oxidation Catalyst (DOC). Experimental measurements reveal that at average equivalence ratios greater than 0.8, methane is the single largest tailpipe-out UHC emission.
Technical Paper

Multi-Dimensional Flamelet Modeling of Multiple Injection Diesel Engines

2012-04-16
2012-01-0133
To enable the modeling of modern diesel engines, this work furthers the development of multi-dimensional flamelet models for application to designs that employ multiple injection strategies. First, the flamelet equations are extended to two dimensions following the work of Hasse and Peters [1] and Doran et al. [2] and a method of coupling the resulting equations interactively to a turbulent flow simulation for use in unsteady calculations is described. The external parameters required to solve the flamelet equations are the scalar dissipation rates. In previous studies, the dissipation rates of each mixture fraction have been scaled according to their realizable bounds and the cross-dissipation rate between mixture fractions has been neglected.
Technical Paper

Modeling of Regeneration Dynamics in Gasoline Particulate Filters and Sensitivity Analysis of Numerical Solutions

2022-03-29
2022-01-0556
Gasoline direct-injection (GDI) engine technology improves vehicle fuel economy while decreasing CO2 emissions. The main drawback of GDI technology is the increase in particulate emissions compared to the commonly used port fuel injection technologies. Today’s adopted strategy to limit such emissions relies upon the use of aftertreatment gasoline particulate filters (GPFs). GPFs reduce particulates resulting from fuel combustion. Soot oxidation (also known as regeneration) is required at regular intervals to clean the filter, maintain a consistent soot trapping efficiency, and avoid the formation of soot plugs in the GPF channels. In this paper, starting from a multiphysics GPF model accounting for mass, momentum, and energy transport, a sensitivity analysis is carried out to choose the best mesh refinement, time step, and relative tolerance to ensure a stable numerical solution of the transport equations during regeneration while maintaining low computational time.
Technical Paper

Lyophilization for Water Recovery III, System Design

2005-07-11
2005-01-3084
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids that remain. Our previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents results of functional and performance tests.
Technical Paper

Large-Eddy Simulation of a NACA23012 Airfoil under Clean and Iced Conditions

2023-06-15
2023-01-1483
Predicting the aerodynamic performance of an aircraft in icing conditions is critical as failures in an aircraft’s ice protection system can compromise flight safety. Aerodynamic effects of icing have typically relied on RANS modeling, which usually struggles to predict stall behavior, including those induced by surface roughness. Encouraged by recent studies using LES that demonstrate the ability to predict stall characteristics on full aircraft with smooth wings at an affordable cost [1], this study seeks to apply this methodology to icing conditions. Measurements of lift, drag, and pitching moments of a NACA23012 airfoil under clean and iced conditions are collected at Re = 1.8M. Using laser scanned, detailed representations of the icing geometries, LES calculations are conducted to compare integrated loads against experimental measurements in both clean and iced conditions at various angles of attack through the onset of stall [2].
Technical Paper

From Trolley to Autonomous Vehicle: Perceptions of Responsibility and Moral Norms in Traffic Accidents with Self-Driving Cars

2016-04-05
2016-01-0164
Autonomous vehicles represent a new class of transportation that may be qualitatively different from existing cars. Two online experiments assessed lay perceptions of moral norms and responsibility for traffic accidents involving autonomous vehicles. In Experiment 1, 120 US adults read a narrative describing a traffic incident between a pedestrian and a motorist. In different experimental conditions, the pedestrian, the motorist, or both parties were at fault. Participants assigned less responsibility to a self-driving car that was at fault than to a human driver who was at fault. Participants confronted with a self-driving car at fault allocated greater responsibility to the manufacturer and the government than participants who were confronted with a human driver at fault did.
Technical Paper

Exploring Transitional Automation with New and Old Drivers

2016-04-05
2016-01-1442
Age and experience influence driver ability to cope with transitions between automated and manual driving, especially when drivers are engaged in media use. This study evaluated three age cohorts (young/new drivers, adults, and seniors) on their performance in transitions from automated driving to manual vehicle control in a laboratory driving simulator. Drivers were given three tasks to perform during the automated driving segments: to watch a movie on a tablet, to read a story on a tablet, or to supervise the car's driving. We did not find significant differences in people's driving performance following the different tasks. We also did not find significant differences in driving performance between the people in each age group who successfully completed the study; however, the rejection rate of the senior age group was over 30% because many of the people in this age group had difficulty hearing instructions, understanding tasks, or remembering what to do.
Journal Article

Dual-Wavelength PLIF Measurements of Temperature and Composition in an Optical HCCI Engine with Negative Valve Overlap

2009-04-20
2009-01-0661
Negative valve overlap (NVO) is a valve strategy employed to retain and recompress residual burned gases to assist HCCI combustion, particularly in the difficult regime of low-load operation. NVO allows the retention of large quantities of hot residual burned gases as well as the possibility of fuel addition for combustion control purposes. Reaction of fuel injected during NVO increases charge temperature, but in addition could produce reformed fuel species that may affect main combustion phasing. The strategy holds potential for controlling and extending low-load HCCI combustion. The goal of this work is to demonstrate the feasibility of applying two-wavelength PLIF of 3-pentanone to obtain simultaneous, in-cylinder temperature and composition images during different parts of the HCCI/NVO cycle. Measurements are recorded during the intake and main compression strokes, as well as during the more challenging periods of NVO recompression and re-expansion.
Technical Paper

Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels

2007-04-16
2007-01-0201
Computational fluid dynamic (CFD) simulations that include realistic combustion/emissions chemistry hold the promise of significantly shortening the development time for advanced high-efficiency, low-emission engines. However, significant challenges must be overcome to realize this potential. This paper discusses these challenges in the context of diesel combustion and outlines a technical program based on the use of surrogate fuels that sufficiently emulate the chemical complexity inherent in conventional diesel fuel.
Technical Paper

Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels

2007-04-16
2007-01-0175
The development of surrogate mixtures that represent gasoline combustion behavior is reviewed. Combustion chemistry behavioral targets that a surrogate should accurately reproduce, particularly for emulating homogeneous charge compression ignition (HCCI) operation, are carefully identified. Both short and long term research needs to support development of more robust surrogate fuel compositions are described. Candidate component species are identified and the status of present chemical kinetic models for these components and their interactions are discussed. Recommendations are made for the initial components to be included in gasoline surrogates for near term development. Components that can be added to refine predictions and to include additional behavioral targets are identified as well. Thermodynamic, thermochemical and transport properties that require further investigation are discussed.
Technical Paper

Determination of Flame-Front Equivalence Ratio During Stratified Combustion

2003-03-03
2003-01-0069
Combustion under stratified operating conditions in a direct-injection spark-ignition engine was investigated using simultaneous planar laser-induced fluorescence imaging of the fuel distribution (via 3-pentanone doped into the fuel) and the combustion products (via OH, which occurs naturally). The simultaneous images allow direct determination of the flame front location under highly stratified conditions where the flame, or product, location is not uniquely identified by the absence of fuel. The 3-pentanone images were quantified, and an edge detection algorithm was developed and applied to the OH data to identify the flame front position. The result was the compilation of local flame-front equivalence ratio probability density functions (PDFs) for engine operating conditions at 600 and 1200 rpm and engine loads varying from equivalence ratios of 0.89 to 0.32 with an unthrottled intake. Homogeneous conditions were used to verify the integrity of the method.
Technical Paper

Design for Graphics

1973-02-01
730411
This paper consists of viewing graphics as a language showing it is critical to effective visual communication Equally important is the process of visual translation itself, the practical application of graphic language to expressive requirements. This paper identifies in logical order some of the major message functions of graphic language, and to develop these functions in terms of specific communicative options available to the designer.
Technical Paper

Closed Loop Control of Lean Fuel-Air Ratios Using a Temperature Compensated Zirconia Oxygen Sensor

1976-02-01
760287
Several recent papers describe closed loop fuel-air ratio control systems designed to operate at stoichiometric conditions because of the high three-way catalyst conversion efficiencies which occur only in a narrow band around stoichiometric. This paper investigates closed loop control of fuel-air ratio using a temperature compensated zirconia sensor at other than stoichiometric conditions. If engines can be made to run at very lean(Φ≈0.6-0.7) equivalence ratios through greater attention to proper fuel-air mixing and vaporization, CO, HC, and NOx emissions are minimized simultaneously. Closed loop control in the lean region makes the system insensitive to parameter variations and allows the fuel-air ratio to be maintained closer to the lean limit than would be possible under conventional open loop conditions.
X