Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wheel Rotation Sensor for Navigation System

1988-02-01
880409
The wheel rotation sensor developed for navigation system is small and light, and generates high output voltage of 0.37V p-p without a prc-amplifier when the gap between the sensor and the multi-polarized magnetic rotor is 2.0mm. The sensor has excellent resistance to environmental conditions. Several simulation tests and car evaluations were carried out and it is confirmed that the sensor generates enough output voltage and satisfies requirements for the system including the decrease of output voltage caused by temperature, gap variation while running, and so on.
Technical Paper

Valve Spring with High Fatigue Resistance for Automotive Engine

1988-02-01
880417
Recently, SiCr clean steel wire for springs on automotive engine valves has been developed. This report describes the characteristics of valve springs subjected to a new manufacturing process using SiCr clean steel wire. The process developed by the authors is as follows: First, form a helical spring with SiCr clean steel wire. Next, quench using the distortion preventing technic --Marquenching--. Temper at a temperature lower than the conventional temperature. Shot peen to the surface layer of the spring. And lastly, polish electrolytically to remove micro surface defects formed through shot peening. Using this new manufacturing process, a valve spring with high fatigue resistance can be produced. At the test stress of 588MPa(τm)±490MPa (τa), the number of cycles to fracture was above 100 million, while the number of cycles to fracture was 4 million using the conventional process with the SiCr clean steel which has the best fatigue resistance for commercial use.
Technical Paper

The Development of P/M Complicated Shape Helical Gears

1996-02-01
960278
Recently, powder metal parts have been used in a lot of automobiles. One typical powder metal part is a helical gear. Compacting helical gears is much different from conventional compacting, because a part of the tool rotates on its own axis. The important points are as follows: (1) how to guide the upper punch into a die smoothly and to fit in it, (2) how to rotate the die/punch smoothly in order that the part of gear trains may not be broken by twisting stress during pressing process and (3) how to prevent green compacts from having crack/lamination. The larger the helix angle, the more difficult its compacting. The compacting of complicated shapes such as helical gears with an irregular shape or another helical gear is more difficult. Powder metal helical gears are produced because powder metal is suitable for mass production at low cost. Most powder metal helical gears are simple shapes such as helical gears only outside or inside.
Technical Paper

Temperature and Humidity Control System of JEM

1996-07-01
961368
A Temperature and Humidity Control (THC) assembly an essential system in order to provide comfortable environment for crew members in Japanese Experiment Module (JEM). Development of an engineering model (EM) and a proto model (PM) of JEM THC assembly started from March 1991 and completed on March 1995 successfully. In this development phase, it is called JEM EM phase, qualification test of THC was conducted to verify the THC design. This paper presents JEM THC design and an outline of the assembly model development.
Technical Paper

TRACE CONTAMINANTS CONTROL ASSEMBLY DEVELOPMENT FOR THE JAPANESE CLOSED ECOLOGY EXPERIMENT FACILITIES

1994-06-01
941446
In the closed environments such as manned space station, it is necessary to remove contaminant gas to keep a suitable environment. Removal of gaseous contaminants generated from crew, animals, and plants is important function to keep the environment below the allowable level in the Closed Ecology Experiment Facilities (abbreviated as CEEF). CEEF consist of three modules for habitat, animal and plant, the supporting facilities for each module and a plant cultivation facility. CEEF are scheduled to be constructed from 1994 in Aomori Prefecture, northern part of Japan. For designing Trace Contaminant Control Assembly (TCCA) for CEEF, the following six (6) trace contaminants have been selected as major contaminant gas in CEEF; Ammonia (NH3) Methane (CH4) Ethylene (C2H4) Carbon Monoxide (CO) Nitrogen Dioxide (NO2) Sulfur Dioxide (SO2) Ethylene is well-known as an aggressive contaminant to plant growth and maturity.
Technical Paper

Study on Characteristics of Auto-Ignition and Combustion of Unsteady Synthetic Gas Jet

2007-04-16
2007-01-0629
It is thought that the synthetic gas, including hydrogen and carbon monoxide, has a potential to be an alternative fuel for internal combustion engines, because a heating value of the synthetic gas is higher than one of hydrogen or natural gas. A purpose of this study is to acquire stable auto-ignition and combustion of the synthetic gas which is supposed to be applied into a direct-injection compression ignition engine. In this study, the effects of ambient gas temperatures and oxygen concentrations on auto-ignition characteristics of the synthetic gas with changing percentage of hydrogen (H2) or carbon monoxide (CO) concentrations in the synthetic gas. An electronically-controlled, hydraulically-actuated gas injector was used to control a precise injection timing and period of gaseous fuels, and the experiments were conducted in an optically accessible, constant-volume combustion chamber under simulated quiescent diesel engine conditions.
Technical Paper

Rotary Car Air Conditioner Made with P/M Al-Si Wrought Alloys

1990-02-01
900407
We have developed new P/M Al-Si wrought alloys having high strength and high wear resistance for use in the rotors and vanes of rotary car air conditioners. In addition, combined with the development of near-net-shape extrusion technologies, through a joint project with Diesel Kiki Co.,Ltd., we have succeeded in the world's first mass production of rotors made of P/M aluminum wrought alloy. In this paper, the properties and production technology of vanes and rotors made with new P/M Al-Si wrought alloys are presented.
Technical Paper

Refill Friction Spot Joining for Aerospace Application

2015-09-15
2015-01-2614
In the modern aircraft manufacturing, the cost reduction, the manufacturing time reduction, and the weight saving of aircraft are strongly demanded. The Refill Friction Spot Joining [1,2](FSJ, in other words FSSW, Friction Stir Spot Welding), which is one of innovative solid-state joining methodologies based on the Friction Stir Welding[3], is a promising technology that can replace rivets and fasteners. This technology is expected to offer cost reduction and weight saving for the aircraft manufacturing. In this study, to make stronger and reliable joints, the shoulder-plunging process of Refill FSJ was employed. The weldability of the Alodine or Chromic Acid Anodize coated materials along with a faying-surface sealant was investigated. The joint properties, such as tensile shear strengths and corrosion resistance, were evaluated.
Technical Paper

Prediction of Vibration Fatigue Life for Motorcycle Exhaust Systems

2011-11-08
2011-32-0642
In this study, the technology that can predict fatigue life for motorcycle exhaust systems is developed. To predict the fatigue life, analyzing the engine vibration, modeling the vibration characteristics of exhaust systems and evaluating the fatigue damage of welded joints are considered essential. This paper shows an integrated numerical simulation and evaluation method. Furthermore, it is also shown with the result of a component vibration test of the muffler assembly to validate the technology. The results indicate a good correlation between the numerical simulation and the test.
Technical Paper

Optimization of Intake Port for Improvement of Fuel Consumption and Torque

2017-11-05
2017-32-0055
In this study on the motorcycle engine, we investigated the geometry of the newly developed intake port with an objective of improving the fuel consumption and the torque in practical range. Herein we present the results obtained. We believe that an effective measure for achieving the stated objective is to improve the combustion speed and combustion stability. To realize that, it is necessary to increase the turbulence during combustion and improve the homogeneity of air-fuel mixture. To investigate the feasible shape of the port, the CFD simulation (including fuel spray analysis) was performed and a geometry that improved the turbulent kinetic energy and mixture homogeneity at the time of ignition was selected. For confirming the combustion improvement effect achieved by tumble strengthening, an engine test was conducted with the same amount of intake air as that used in.
Technical Paper

Knock and Misfire Detection using Ion Current Measurement for Ultra Lean Burn Medium Speed Gas Engine

2007-07-23
2007-01-2078
The aim of this study was to clarify the feasibility of applying ion current measurement to detect knock and misfire in lean-burn gas engines. The practical applicability was evaluated by conducting a basic test on a small engine and a test on a large engine. The tests were conducted by advancing the ignition timing to cause knocking, and an evaluation was carried out by comparing the knocking intensity detected by ion current signals and by cylinder pressure signals. By increasing the application voltage and including an amplifier circuit, the weak ion current signals were detected, which indicates that it should be possible to use ion current measurement to detect knock and misfire in lean-burn gas engines.
Technical Paper

Joining of Si3 N4 Turbine Rotor and Metal Shaft

1994-03-01
940203
The joining process of silicon nitride (S13N4) turbine rotor and steel metal shaft was investigated. The process consists of brazing procedures with multi-layer metallizing and complementary steps involving shrink fitting and non-destructive tests. In the course of the brazing steps, preliminary investigations using small specimens were conducted on the formation of a highly strengthened interface at high temperature and thermal stress reduction, and superior high temperature strength and heat cycle resistance were obtained. Rotary tests at high temperature were successfully completed using the rotor joined by this process.
Technical Paper

JCMAS New Grease Specifications for Construction Machinery

2006-10-31
2006-01-3504
Since construction machinery manufacturers recommend various brands and types of greases for their machinery, customers would benefit from a standardized grease which can be used in all construction machinery. Furthermore, construction machinery manufacturers have many experiences of field problems caused by commercially available and commonly used EP Lithium greases. Therefore, the Fuels and Lubricants Committee of Japan Construction Mechanization Association (JCMA) has developed a new grease specification called “Japan Construction Mechanization Association Specification (JCMAS) GK,” for construction equipment. The JCMAS GK includes requirements for National Lubrication and Grease Institute (NLGI) No. 1 and No. 2 consistency grades. The JCMAS GK greases have enough lubricating properties for periodical grease fitting of most construction machines, hydraulic excavators, bulldozers and wheel loaders. The JCMAS GK greases are applicable from -20 to +130 degrees Celsius.
Technical Paper

Inlet Unstart Influence on Aerodynamic Characteristics of Next Generation Supersonic Transport (SST)

1998-09-28
985546
The impact of inlet unstart phenomena on supersonic transport (SST) was investigated by wind tunnel testing. Inlet unstart condition was simulated by controlling the captured mass flow by the inlet. Unsteady pressures on the lower surface of wing and unsteady forces of the wind tunnel model were measured. Unsteady pressure measurement was carried out to detect shock wave motion. Unsteady force measurement by using both internal balance and accelerometers was to estimate axial/angular acceleration of airframe when inlet unstart was occurred. The pressure measurement data revealed that shock location fluctuated with dominant frequency although the controlled mass flow was steady. And it was analytically shown that the dominant frequency is corresponding to the first order frequency of organ pipe resonance.
Technical Paper

Increasing of Seizure Durability of Shift Fork Using Surface Treatment

2005-10-12
2005-32-0020
In line with the increase in the output of motorcycle engines, there has been an increase in incidents of the seizure between shift fork and gear because of the increased thrust force. We designed a test method that uses actual shift forks to simulate actual sliding conditions, then used that test method to evaluate the feature of the shift fork sliding and the different shift fork surface treatments. The shift fork slid against the gear not as surface contact but as tilted contact. We selected the candidates from the view that the surface treatment of the shift fork contact surface to give it higher seizure resistance when in tilted contact is required. We evaluated chromium nitride thin film, diamond-like carbon thin film, molybdenum sprayed coating, and sulphonitriding, and molybdenum sprayed coating exhibited the highest seizure resistance. The conformability plays a significant role in the sliding between the shift fork and the gear.
Technical Paper

Improvement of Wear Resistance of Cam Shaft and Rocker Arm at 4-Cycle Engines

1999-09-28
1999-01-3296
The rocker arm has a function to lead the cam shaft rotation to the valve operation. There are cases when damages are caused due to abnormal wear at the sliding part, causing certain problems. Authors classified the wear phenomenon, and realized a systematic analysis on the possible cause of the damage. As a result, it was revealed that the damage was of two types, and to prevent the hard wear, it is effective to apply shot peening before plating. The prototype rocker arm was test under various lubricating conditions, thus actually confirming that the occurrence of wear was largely reduced.
Technical Paper

Improved Briles Rivet Forming Using High-Speed Force Feedback and Improved Die Geometry

2019-03-19
2019-01-1377
Electroimpact and Kawasaki Heavy Industries (KHI) have produced a new riveting process for the forming of Briles type rivets in Boeing 777 and 777X fuselage assemblies. The Briles rivet is typically used for fuselage assembly and is unique in that it has a self-sealing head. Unlike conventional headed rivets such as the NAS1079, this fastener does not require aircraft sealant under the head to be fluid tight. This unique fastener makes for a difficult fastening process due to the fact that interference must be maintained between the hole and fastener shank, as well as along the sides of the fastener head. Common issues with the formed fasteners include gapping under the fastener head and along the shank of the fastener. Electroimpact has employed a host of different technologies to combat these issues with Briles fastening. First, Electroimpact’s patented “Air Gap” system allows the machine to confirm that the head of the rivet is fully seated in the countersink prior to forming.
Technical Paper

High-Speed Machining of Titanium by New PCD Tools

1999-06-05
1999-01-2296
The paper deals with the end-milling machinability of α-β titanium alloy (Ti-6AI-4V alloy) by new PCD (Polycrystal-line Diamond) cutting tools at high cutting speeds in order to develop a new technology for a high productivity titanium finishing. The main focus of this paper is on investigating the relationships among cutting conditions, PCD tool materials, and tool wear. It was found that the edge engagement time of cutting tools with titanium workpiece has a great effect on PCD tool wear. Compared to cemented carbide tools, PCD tools have a longer tool life, especially at higher cutting speeds. The geometric shape of cutting edges and tool material greatly influences the performance of PCD tools in cutting titanium alloy.
Technical Paper

High Performance P/M Stainless Steel for ABS Sensor Application

1999-03-01
1999-01-0342
ABS sensor rings for automotive use are becoming smaller and thinner because of the demand for low cost and light weight. Such small thin parts are easier to break as they must withstand the same severe conditions as larger heavier parts. Superior elongation properties, after corrosion testing, are necessary for avoiding breakage and to obtain superior corrosion resistance. We have, therefore, developed such high performance P/M stainless steel with superior elongation and corrosion resistance. Conventional stainless steel has uniform pores on its inner surface which makes allows water penetration thus making corrosion worse and decreasing elongation. It is possible to increase corrosion resistance by changing pore structure (e.g. decrease continual pores) through the addition of special alloys that accelerate the sintering process.
Technical Paper

Friction Characteristics Evaluation of Carbon/Carbon Composite Produced by Carbon Powder Sintering Method

1997-02-24
971135
We have developed a new Carbon/Carbon composite (C/C) manufacturing process called the “Carbon Powder Sintering Method [1] (C.P.S.M.)”. This study was conducted to evaluate the friction characteristics of C/C manufactured by the C.P.S.M. as compared with C/C manufactured by conventional methods using a dynamometer. In general, C/C shows a high friction coefficient at a high temperature, but shows a low friction coefficient at room temperature. There is a transition temperature point between both friction coefficients. As a result of this study, it was found that the transition temperature of the C.P.S.M. C/C is lower than for any other conventional C/C.
X