Refine Your Search

Topic

Author

Search Results

Technical Paper

A Fuzzy Decision-Making System for Automotive Application

1998-02-23
980519
Fault diagnosis for automotive systems is driven by government regulations, vehicle repairability, and customer satisfaction. Several methods have been developed to detect and isolate faults in automotive systems, subsystems and components with special emphasis on those faults that affect the exhaust gas emission levels. Limit checks, model-based, and knowledge-based methods are applied for diagnosing malfunctions in emission control systems. Incipient and partial faults may be hard to detect when using a detection scheme that implements any of the previously mentioned methods individually; the integration of model-based and knowledge-based diagnostic methods may provide a more robust approach. In the present paper, use is made of fuzzy residual evaluation and of a fuzzy expert system to improve the performance of a fault detection method based on a mathematical model of the engine.
Technical Paper

A Novel Approach to Real-Time Estimation of the Individual Cylinder Combustion Pressure for S.I. Engine Control

1999-03-01
1999-01-0209
Over the last decade, many methods have been proposed for estimating the in-cylinder combustion pressure or the torque from instantaneous crankshaft speed measurements. However, such approaches are typically computationally expensive. In this paper, an entirely different approach is presented to allow the real-time estimation of the in-cylinder pressures based on crankshaft speed measurements. The technical implementation of the method will be presented, as well as extensive results obtained for a V-6 S.I. engine while varying spark timing, engine speed, engine load and EGR. The method allows to estimate the in-cylinder pressure with an average estimation error of the order of 1 to 2% of the peak pressure. It is very general in its formulation, is statistically robust in the presence of noise, and computationally inexpensive.
Technical Paper

AFR Control on a Single Cylinder Engine Using the Ionization Current

1998-02-23
980203
Over the years numerous researchers have suggested that the ionization current signal carries within it combustion relevant information. The possibility of using this signal for diagnostics and control provides motivation for continued research in this area. To be able to use the ion current signal for feedback control a reliable estimate of some combustion related parameter is necessary and therein lies the difficulty. Given the nature of the ion current signal this is not a trivial task. Fei An et al. [1] employed PCA for feature extraction and then used these feature vectors to design a neural network based classifier for the estimation of air to fuel ratio (AFR). Although the classifier predicted AFR with sufficient reliability, a major draw back was that the ion current signals used for prediction were averaged signals thus precluding a cycle to cycle estimate of AFR.
Technical Paper

Air-Fuel Ratio Control for a High Performance Engine using Throttle Angle Information

1999-03-01
1999-01-1169
This paper presents the development of a model-based air/fuel ratio controller for a high performance engine that uses, in addition to other usual signals, the throttle angle to enable predictive air mass flow rate estimation. The objective of the paper is to evaluate the possibility to achieve a finer air/fuel ratio control during transients that involve sudden variations in the physical conditions inside the intake manifold, due, for example, to fast throttle opening or closing actions. The air mass flow rate toward the engine cylinders undertakes strong variation in such transients, and its correct estimation becomes critical mainly because of the time lag between its evaluation and the instant when the air actually enters the cylinders.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

An Investigation of Mixture Formation Processes During Start-Up of a Natural Gas Powered SI Engine

1998-05-04
981387
The mixture formation processes of methane and air in an optical access engine operating steadily at 200 RPM have been explored in order to study charge inhomogeneity in a natural gas powered spark ignition engine during transient engine cranking. Planar Laser Induced Fluorescence has been used to create fuel/air equivalence ratio maps as a function of injection timing for various image planes at intervals throughout the intake and compression strokes. The work has been done using a Honda VTEC-E engine head that features port injection, four valves per cylinder, a pentroof style combustion chamber for the generation of tumble motion, and one nearly deactivated intake valve to generate swirl motion at low engine speeds in order to enhance mixing.
Technical Paper

An Investigation of Shaft Dynamic Effects on Gear Vibration and Noise Excitations

2003-05-05
2003-01-1491
Transmission error has long been identified to be the main exciter of gear whine noise. This research effort seeks to investigate the mechanisms and principal controlling factors that affect the actual noise generation from a typical gearbox housing due to transmission error excitations. The insight gained is expected to help in identifying possible noise control procedures in typical gearing applications. The example gearbox of this paper is an aircraft auxiliary-drive idler gearbox run at low load so that transmission error is the primary mesh excitation. A limited set of dynamic noise and vibration data are collected in transient speed run-ups. A contact-mechanics gear-tooth model is used to predict the static transmission error at each mesh. A finite-element model of the shafting that incorporates complex shaft and bearing data is used to predict the shaft dynamics with the static transmission error at the gear mesh(es) as the sole excitation.
Technical Paper

Analysis of Human Driver Behavior in Highway Cut-in Scenarios

2017-03-28
2017-01-1402
The rapid development of driver assistance systems, such as lane-departure warning (LDW) and lane-keeping support (LKS), along with widely publicized reports of automated vehicle testing, have created the expectation for an increasing amount of vehicle automation in the near future. As these systems are being phased in, the coexistence of automated vehicles and human-driven vehicles on roadways will be inevitable and necessary. In order to develop automated vehicles that integrate well with those that are operated in traditional ways, an appropriate understanding of human driver behavior in normal traffic situations would be beneficial. Unlike many research studies that have focused on collision-avoidance maneuvering, this paper analyzes the behavior of human drivers in response to cut-in vehicles moving at similar speeds. Both automated and human-driven vehicles are likely to encounter this scenario in daily highway driving.
Technical Paper

Approximating Engine Tailpipe Orifice Noise Sound Quality using a Surge Tank and In-Duct Measurements

2003-05-05
2003-01-1641
Because of the need to safely vent exhaust gases, most engine dynamometer facilities are not well suited to measuring engine exhaust orifice noise. Depending on the location of the dyno facility within the building, the exhaust system may need to be extended in order to properly vent the exhaust fumes. This additional ducting changes the acoustic modes of the exhaust system which will change the measured orifice noise. Duct additions downstream of the original orifice location also alter the termination impedance such that in-duct pressure measurements with and without the extended exhaust system can vary significantly. In order to minimize the effect of the building's exhaust system on the desired engine exhaust system measurements, the present approach terminates the engine exhaust into a large enclosed volume or surge tank before venting the gases into the building's ventilation system.
Technical Paper

Autoignition Characteristics of Primary Reference Fuels and their Mixtures

2009-11-02
2009-01-2624
This study investigates the autoignition of Primary Reference Fuels (PRFs) using a detailed kinetic model. The chemical kinetics software CHEMKIN is used to facilitate solutions in a constant volume reactor and a variable volume reactor, with the latter representing an IC engine. Experimental shock tube and HCCI engine data from literature is compared with the present predictions in these two reactors. The model is then used to conduct a parametric study in the constant volume reactor of the effect of inlet pressure, inlet temperature, octane number, fuel/air equivalence ratio, and exhaust gas recirculation (EGR) on the autoignition of PRF/air mixtures. A number of interesting characteristics are demonstrated in the parametric study. In particular, it is observed that PRFs can exhibit single or two stage ignition depending on the inlet temperature. The total ignition delay, whether single or two stage, is correlated withn-C7H16/O2 ratio.
Technical Paper

Automated Steering Controller for Vehicle Testing

2007-08-05
2007-01-3647
Automating road vehicle control can increase the range and reliability of dynamic testing. Some tests, for instance, specify precise steering inputs which human test drivers are only able to approximate, adding uncertainty to the test results. An automated steering system has been developed which is capable of removing these limitations. This system enables any production car or light truck to follow a user-defined path, using global position feedback, or to perform specific steering sequences with excellent repeatability. The system adapts itself to a given vehicle s handling characteristics, and it can be installed and uninstalled quickly without damage or permanent modification to the vehicle.
Technical Paper

Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt Loading

2016-11-07
2016-22-0004
Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event.
Technical Paper

Case History: Engine Timing Gear Noise Reduction

1999-05-17
1999-01-1716
This paper describes the procedures used to reduce the tonal noise of a class eight truck engine timing gear train that was initially found to be objectionable under idle operating conditions. Initial measurements showed that the objectionable sounds were related to the fundamental gear mesh frequency, and its second and third harmonics. Experimental and computational procedures used to study and trouble-shoot the problem include vibration and sound measurements, transmission error analysis of the gears under light load condition, and a dynamic analysis of the drive system. Detail applications of these techniques are described in this paper.
Technical Paper

Characterization of Catalytic Converter Mat Material for Predictive Analysis

2000-03-06
2000-01-0218
Catalytic converters are typically constrained and cushioned by an intumescent mat material that is critical to the durability of the ceramic and metallic substrates. In an effort to reduce costs and improve designs, this work attempts to develop and verify a material model for the mat that can be utilized in predictive analysis. Test data are used in conjunction with the finite element program ABAQUS™ to create both a hyperfoam and a user-defined material model. These models will be verified and compared by modelling with ABAQUS the specimens and test conditions used to generate the data.
Technical Paper

Characterization of Vehicle Occupant Compartment Material Properties Using MADYMO: Methodology and Validation

2009-06-09
2009-01-2260
During a motor-vehicle collision, an occupant may interact with a variety of interior structures. The material properties and construction of these structures can directly affect the occupant's kinetic response. Simulation tools such as MADYMO (Mathematical Dynamical Models) can be used to estimate the forces imparted to an occupant for injury mechanism and causation evaluation relative to a particular event. Depending on the impact event and the specific injury mechanism being evaluated, the selection of proper material characteristics can be quite important. A comprehensive literature review of MADYMO studies illustrates the prevalent use of generic material characteristics and the need for improved property estimation and implementation methods.
Journal Article

Circumferential Variation of Noise at the Blade-Pass Frequency in a Turbocharger Compressor with Ported Shroud

2021-08-31
2021-01-1044
The ported shroud casing treatment for turbocharger compressors offers a wider operating flow range, elevated boost pressures at low compressor mass flow rates, and reduced broadband whoosh noise in spark-ignition internal combustion engine applications. However, the casing treatment elevates tonal noise at the blade-pass frequency (BPF). Typical rotational speeds of compressors employed in practice push BPF noise to high frequencies, which then promote multi-dimensional acoustic wave propagation within the compressor ducting. As a result, in-duct acoustic measurements become sensitive to the angular location of pressure transducers on the duct wall. The present work utilizes a steady-flow turbocharger gas stand featuring a unique rotating compressor inlet duct to quantify the variation of noise measured around the duct at different angular positions.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface

2007-04-16
2007-01-0649
The interface between a plenum and primary runner in log-style intake manifolds is one of the dominant sources of flow losses in the breathing system of Internal Combustion Engines (ICE). A right-angled T-junction is one such interface between the plenum (main duct) and the primary runner (sidebranch) normal to the plenum's axis. The present study investigates losses associated with the combining flow through these junctions, where fluid from both sides of the plenum enters the primary runner. Steady, incompressible-flow experiments for junctions with circular cross-sections were conducted to determine the effect of (1) runner interface radius of 0, 10, and 20% of the plenum diameter, (2) plenum-to-runner area ratio of 1, 2.124, and 3.117, and (3) runner taper area ratio of 2.124 and 3.117. Mass flow rate in each branch was varied to obtain a distribution of flow ratios, while keeping the total flow rate constant.
Technical Paper

Comparative study of different control strategies for Plug-In Hybrid Electric Vehicles

2009-09-13
2009-24-0071
Plug-In Hybrid Vehicles (PHEVs) represent the middle point between Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs), thus combining benefits of the two architectures. PHEVs can achieve very high fuel economy while preserving full functionality of hybrids - long driving range, easy refueling, lower emissions etc. These advantages come at an expense of added complexity in terms of available fuel. The PHEV battery is recharged both though regenerative braking and directly by the grid thus adding extra dimension to the control problem. Along with the minimization of the fuel consumption, the amount of electricity taken from the power grid should be also considered, therefore the electricity generation mix and price become additional parameters that should be included in the cost function.
Technical Paper

Comparison of ATD to PMHS Response in the Under-Body Blast Environment

2015-11-09
2015-22-0017
A blast buck (Accelerative Loading Fixture, or ALF) was developed for studying underbody blast events in a laboratory-like setting. It was designed to provide a high-magnitude, high-rate, vertical loading environment for cadaver and dummy testing. It consists of a platform with a reinforcing cage that supports adjustable-height rigid seats for two crew positions. The platform has a heavy frame with a deformable floor insert. Fourteen tests were conducted using fourteen PMHS (post mortem human surrogates) and the Hybrid III ATD (Anthropomorphic Test Device). Tests were conducted at two charge levels: enhanced and mild. The surrogates were tested with and without PPE (Personal Protective Equipment), and in two different postures: nominal (knee angle of 90°) and obtuse (knee angle of 120°). The ALF reproduces damage in the PMHS commensurate with injuries experienced in theater, with the most common damage being to the pelvis and ankle.
X