Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Zero-Dimensional Modeling of Combustion and Heat Release Rate in DI Diesel Engines

2012-04-16
2012-01-1065
Zero-dimensional heat release rate models have the advantage of being both easy to handle and computationally efficient. In addition, they are capable of predicting the effects of important engine parameters on the combustion process. In this study, a zero-dimensional combustion model based on physical and chemical sub-models for local processes like injection, spray formation, ignition and combustion is presented. In terms of injection simulation, the presented model accounts for a phenomenological nozzle flow model considering the nozzle passage inlet configuration and an approach for modeling the characteristics of the Diesel spray and consequently the mixing process. A formulation for modeling the effects of intake swirl flow pattern, squish flow and injection characteristics on the in-cylinder turbulent kinetic energy is presented and compared with the CFD simulation results.
Technical Paper

Virtual Exhaust-Gas Aftertreatment Test Bench - A Contribution to Model-Based Development and Calibration of Engine Control Algorithmsa

2012-04-16
2012-01-0897
Introducing new exhaust-gas aftertreatment concepts at mass production level places exacting demands on the overall development process - from defining process engineering to developing and calibrating appropriate control-unit algorithms. Strategies for operating and controlling exhaust-gas aftertreatment components, such as oxidation and selective catalytic reduction catalysts (DOC and SCR), diesel particulate filters (DPF) and SCR on DPF systems (SCR/DPF), have a major influence on meeting statutory exhaust-emission standards. Therefore it is not only necessary to consider the physical behavior of individual components in the powertrain but also the way in which they interact as the basis for ensuring efficient operation of the overall system.
Technical Paper

Transient Characteristics of Cold Start Emissions from a Two-Stage Direct Injection Gasoline Engines Employing the Total Stoichiometric Ratio and Local Rich Mixture Start-up Strategy

2012-04-16
2012-01-1068
To improve the cold start performance and to reduce the misfire occurrence at cold start, the start-up strategy of total stoichiometric ratio combined with local rich mixture was applied in the study. The effect of injection strategy (the 1st injection timing, 2nd injection timing, 1st and 2nd fuel injection proportion and ignition timing) on the cold start HC emissions in the initial 10 cycles were investigated in a Two stage direct injection (TSDI) gasoline engine. The transient HC and NO emissions in the initial 10 cycles were analyzed, when the fuels are injected in the only 1st cycle and in the followed all cycles. The transient misfiring HC emissions were compared between the single and two-stage injection modes. In addition, the unburned HC (UBHC) emissions in the 1st cycle are compared among the TSDI engine, Gasoline direct injection (GDI) engine, Port fuel injection (PFI) engine and Liquefied petroleum gaseous (LPG) engine at the stoichiometric ratio.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

The Automated Shift Transmission (AST) - Possibilities and Limits in Production-Type Vehicles

2001-03-05
2001-01-0881
State-of-the-art powertrain concepts with automatic transmission must comply with increasingly stringent legislation on emissions and fuel consumption while fulfilling or surpassing customers' expectations as to driveability. In this respect, automated manual transmissions (AMT) and automated shift transmissions (AST) must compete with conventional automatic transmissions (AT) and continuously variable transmissions (CVT). In order to exploit the theoretical advantages of ASTs and put them into practice, complex ECU functions are needed to coordinate engine and transmission. Adaptive control, sophisticated clutch management and an intelligent shifting strategy allow shifting quality and shifting points to be simultaneously optimized to the effect that performance and comfort are increased while fuel consumption is reduced.
Technical Paper

System Design and Model of a 3D 79 GHz High Resolution Ultra-Wide Band Millimeter-Wave Imaging Automotive Radar

2018-08-07
2018-01-1615
Automotive radar is an important environment perception sensor for advance driving assistance system. It can detect objects around the vehicle with high accuracy and it works in all bad weathers. For traditional automotive radar, it cannot measure the objects’ height. Thus, a manhole cover on the road surface or a guideboard high above the road would be taken erroneously as a non-moving car. In such cases, the adaptive cruise system would decelerate or stop the vehicle erroneously and make the driver uncomfortable. A 3D automotive radar with two-dimensional electronic scanning can measure the targets’ height as well as the targets’ azimuth angle. This paper presents a 79 GHz ultra-wide band automotive 3D imaging radar. Due to the 4 GHz wide bandwidth, the range resolution of this radar can be as small as 3.75 cm.
Technical Paper

Swarm Intelligence Based Algorithm for Management of Autonomous Vehicles on Arterials

2018-08-07
2018-01-1646
Connected and autonomous vehicles are different from traditional vehicles. The communication between vehicles (V2V) or between vehicles and infrastructures (V2I) renders it possible to convey traffic information (e.g. signal timing or speed advisory) from signal controllers to vehicles as well as vehicles to vehicles in real time. Taking this advantage, this paper aims to developing an algorithm which enables the interconnected autonomous vehicles running efficiently on arterials. A set of driving rules determining random behavior and swarm behavior of autonomous vehicles is developed based on swarm intelligence theory. Under control of these rules, each autonomous vehicle follows the same rules, which make it select target vehicle from all the optimal individuals in detection zone according to characteristics of itself, then approach to the target by changing lane, following former car, or accelerating.
Technical Paper

Study on Fuel Injection Parameters Optimization for Common Rail Diesel Engine Fueled with B20 Biodiesel

2014-10-13
2014-01-2655
As a type of alternative fuel, biodiesel has advantages in reducing greenhouse gases and ensuring energy security. Compared with petroleum diesel, biodiesel has different lower calorific value, oxygen content and octane number that would raise problems when the unoptimized common rail diesel engine is fueled with biodiesel or its petroleum diesel blends. Among these problems, decreasing full load torque output and increasing NOx and BSFC are significantly important. Fuel injection parameter calibration and optimization experiments are carried out in an in-line 6-cylinder 8.82 liter turbocharged and intercooled common rail diesel, which is equipped with Denso ECD-U2 fuel injection system, SCR (Selective catalytic reduction) and DPF (diesel particulate filter). To avoid after-treatment apparatus' coupling influence and re-calibration, emission measure point is set in front of catalysts. The experiment adopts B20 biodiesel as test fuel.
Technical Paper

Study on Fuel Economy Improvement by Low Pressure Water-Cooled EGR System on a Downsized Boosted Gasoline Engine

2016-04-05
2016-01-0678
This research was concerned with the use of Exhaust Gas Recirculation (EGR) improving the fuel economy over a wide operating range in a downsized boosted gasoline engine. The experiments were performed in a 1.3-Litre turbocharged PFI gasoline engine, equipped with a Low Pressure (LP) water-cooled EGR system. The operating conditions varied from 1500rpm to 4000rpm and BMEP from 2bar to 17bar. Meanwhile, the engine’s typical operating points in NEDC cycle were tested separately. The compression ratio was also changed from 9.5 to 10.5 to pursue a higher thermal efficiency. A pre-compressor throttle was used in the experiment working together with the EGR loop to keep enough EGR rate over a large area of the engine speed and load map. The results indicated that, combined with a higher compression ratio, the LP-EGR could help to reduce the BSFC by 9∼12% at high-load region and 3∼5% at low-load region.
Technical Paper

Simulations of Key Design Parameters and Performance Optimization for a Free-piston Engine

2010-04-12
2010-01-1105
To develop a free-piston engine-alternator integrative power system for Hybrid Electric Vehicles, the key design parameters, such as reciprocating mass of the piston assembly, compression ratio, the ignition timing, the engine fuel consumption rate and power output, are studied based on the simulation. The results show that, the system simulation model of the free piston engine can predict the in-cylinder pressure vs. the piston's displacement being accurate enough as the test results from reported reference. The model can be employed to optimize the design parameters and to predict the fuel economy and power output. It provides the methods and bases for the free piston engine design and predicting the main performance parameters' values.
Technical Paper

STATE OF HEALTH DETERMINATION OF LITHIUM ION CELLS IN AND OUTSIDE THE VEHICLE

2011-05-17
2011-39-7235
There is an enormous effort to implement safety functionality into battery systems to prevent any accidents with the poisonous and inflammable ingredients of the electrolytes and electrode materials. But not only the safety regulation for lithium ion batteries will be different in comparison to the home electronics application, also the operating strategy must be different to guaranty the required lifetime in the automotive industry up to 10-12 years. This paperwork will show an approach to get offline (on test benches) and/or online (installed inside the car) information regarding the current healthy and state inside the cell. As an approach modeling of physical effects by the help of electro impedance spectroscopy (EIS) will be applied.
Book

Road Vehicle Dynamics Problems and Solutions

2010-04-13
This workbook, a companion to the book Road Vehicle Dynamics, will enable students and professionals from a variety of disciplines to engage in problem-solving exercises based on the material covered in each chapter of that book. Emphasizing application more than theory, the workbook presents systematic rules of analysis that students can follow in a step-by-step manner to understand the efficiencies or shortcomings of various techniques. Readers will gain a greater understanding of the factors influencing ride, handling, braking, acceleration, and vehicle safety.
Journal Article

Prediction of Temperature Field Inside Lithium-Ion Battery Based on Similarity Theory

2014-04-01
2014-01-1841
To accurately and efficiently predict the temperature fields inside a lithium-ion battery is key technology for the enhancement of battery thermal management and the improvement of battery performances. The dimensional analysis method is applied to derive similarity criterions and the similarity coefficients of battery interior temperature fields, based on the governing partial differential equations describing the three dimensional transient temperature field. To verify the correctness of similarity criterions and the similarity coefficients, 3D finite element models of battery temperature field are established with a prototype and scale model, on the assumption that the battery cell has single-layer structure and multi-layers structure separately. The simulation results show that the similarity criterions and the similarity coefficients are correct.
Technical Paper

Potential of an Innovative, Fully Variable Valvetrain

2004-03-08
2004-01-1393
Under the persistent pressure to further reduce fuel consumption worldwide, it is necessary to advance the processes that influence the efficiency of gasoline engines. In doing so, harnessing the entire potential of fully variable mechanical valve trains will involve targeting efforts on optimizing all design parameters. A new type of valve timing system is used to portray thermodynamic and mechanical as well as electronic aspects of developing fully variable mechanical valve timing and lift systems
Journal Article

Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System

2012-04-16
2012-01-1083
A physico-chemical model of a Cu-zeolite SCR/DPF-system involving NH₃ storage and SCR reactions as well as soot oxidation reactions with NO₂ has been developed and validated based on fundamental experimental investigations on synthetic gas test bench. The goal of the work was the quantitative modeling of NOx and NH₃ tailpipe emissions in transient test cycles in order to use the model for concept design analysis and the development of control strategies. Another focus was put on the impact of soot on SCR/DPF systems. In temperature-programmed desorption experiments, soot-loaded SCR/DPF filters showed a higher NH₃ storage capacity compared to soot-free samples. The measured effect was small, but could affect the NH₃ slip in vehicle applications. A bimodal desorption characteristic was measured for different adsorption temperatures and heating rates.
Technical Paper

Physical Modeling of Automotive Turbocharger Compressor: Analytical Approach and Validation

2011-09-13
2011-01-2214
Global warming is a climate phenomenon with world-wide ecological, economic and social impact which calls for strong measures in reducing automotive fuel consumption and thus CO2 emissions. In this regard, turbocharging and the associated designing of the air path of the engine are key technologies in elaborating more efficient and downsized engines. Engine performance simulation or development, parameterization and testing of model-based air path control strategies require adequate performance maps characterizing the working behavior of turbochargers. The working behavior is typically identified on test rig which is expensive in terms of costs and time required. Hence, the objective of the research project “virtual Exhaust Gas Turbocharger” (vEGTC) is an alternative approach which considers a physical modeled vEGTC to allow a founded prediction of efficiency, pressure rise as well as pressure losses of an arbitrary turbocharger with known geometry.
Technical Paper

Optimization of Control Strategy for Engine Start-stop in a Plug-in Series Hybrid Electric Vehicle

2010-10-25
2010-01-2214
Plug-in hybrid electric vehicles (PHEVs) provide significantly improvement in fuel economy over conventional vehicles as well as reductions in greenhouse gas and petroleum. Numerous recent reports regarding control strategy, power train configuration, driving pattern, all electric range (AER) and their effects on fuel consumption and electric energy consumption of PHEVs are reported. Meanwhile, the control strategy for engine start-stop and mileage between recharging events from the electricity grid also has an important influence on the petroleum displacement potential of PHEVs, but few reports are published. In this paper, a detailed simulation model is set up for a plug-in series hybrid electric vehicle (PSHEV) employing the AVL CRUISE. The model was employed to predict the AER of the baseline PSHEV using rule-based logical threshold switching control strategy.
Technical Paper

Open-Loop Characteristics Analysis and Control of High Speed On-Off Valve

2018-10-05
2018-01-1868
In the process of ABS control, the Anti-lock braking system (ABS) of the vehicle adjusts the wheel cylinder brake pressure through the hydraulic actuator so as to control the movement of the wheel. The high-speed on-off valve (HSV) is the key components of the Anti-lock braking system. HSV affects the performance of the hydraulic actuator and the valve response characteristics affects the Anti-lock braking system pressure response as well as braking effect. In this paper, the electromagnetic field theory and flow field theory of HSV are analyzed, and simulation analysis of electromagnetic field characteristics of HSV is done by ANSYS. Combined with the ANSYS analysis results, a precise physical model of HSV is constructed in AMESim. Meanwhile, the valve response characteristics are analyzed. Moreover, the influence of different wheel cylinder diameter and PWM carrier frequency on hydraulic braking force characteristics are analyzed.
Technical Paper

Nucleation Mode Particle Emissions from a Diesel Engine with Biodiesel and Petroleum Diesel Fuels

2010-04-12
2010-01-0787
Effects of biodiesel fuel on nucleation mode particles were studied on a direct injection, high pressure common-rail diesel engine for passenger cars. Particle number and size distribution of the diesel engine were obtained using an Engine Exhaust Particle Sizer (EEPS). The base petroleum diesel, three different blend ratios of petroleum diesel/biodiesel (10%, 20% and 50% v/v biodiesel blend ratios), and the pure biodiesel fuel (obtained and converted from Jatropha seed in China) (B0, B10, B20, B50 and B100 fuels) were tested without engine modification. Experiments were performed on a series of engine operating conditions. The particle number size distribution of the engine shows unimodal or bimodal log-normal distribution. With the biodiesel blend ratios increasing, the number of nucleation mode particles increases at all test engine operating conditions and accumulation mode particles decreases at most engine operating conditions.
Technical Paper

Modeling of Close-Coupled SCR Concepts to Meet Future Cold Start Requirements for Heavy-Duty Engines

2019-04-02
2019-01-0984
The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system (ATS). Several different aftertreatment architectures and technologies, all based on selective catalytic reduction (SCR), are being considered to meet this need. One of these architectures, the close-coupled SCR (ccSCR), was evaluated in this study using two different physics-based, 1D models; the simulations focused on the first 300 seconds of the cold-start Federal Test Procedure (FTP). The first model, describing a real, EuroVI-compliant engine equipped with series turbochargers, was used to evaluate a ccSCR located either i) immediately downstream of the low-pressure turbine, ii) in between the two turbines, or iii) in a by-pass around the high pressure turbine.
X