Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Compatibility - Analysis of the Factors Influencing Side Impact Occupant Injury

1999-03-01
1999-01-0067
This paper discusses a study conducted by GM to better understand the factors that influence injury potential in vehicle-to-vehicle side impacts. A number of other studies have been done which focus primarily on frontal vehicle-to-vehicle compatibility. GM focused on side impact compatibility in this study due to the risk of harm generally associated with this type of crash. Real world field performance was studied through an extensive six-state field analysis of recent model year (‘94+) vehicles. Of particular interest in this study was an efficacy analysis of the MVSS 214 dynamic side impact standard, which was phased-in starting with some 1994 model year passenger cars. Physical side impact crash testing of a 1997 passenger car was used to investigate the relationship of impacting mass, speed, geometric profile and stiffness on side impact intrusion and occupant injury.
Technical Paper

Update of the WorldSID 50th Male Pelvic Injury Criterion and Risk Curve

2018-04-03
2018-01-0539
Petit et al. 2015 and Lebarbé et al. 2016 reported on two studies where the injury mechanism and threshold of the sacroiliac joint were investigated in two slightly oblique crash test conditions from 18 Post Mortem Human Subjects (PMHS) tests. They concluded that the sacroiliac joint fractures were associated with pubic rami fractures. These latter being reported to occur first in the time history. Therefore it was recommended not to define a criterion specific for the sacroiliac joint. In 2012, injury risk curves were published for the WorldSID dummy by Petitjean et al. For the pelvis, dummy and PMHS paired tests from six configurations were used (n = 55). All of these configurations were pure lateral impacts. In addition, the sacroiliac joint and femur neck loads were not recorded, and the dummy used was the first production version (WorldSID revision 1). Since that time, the WorldSID was updated several times, including changes in the pelvis area.
Technical Paper

Thoracic Injury Risk Curves for Rib Deflections of the SID-IIs Build Level D

2016-11-07
2016-22-0016
Injury risk curves for SID-IIs thorax and abdomen rib deflections proposed for future NCAP side impact evaluations were developed from tests conducted with the SID-IIs FRG. Since the floating rib guide is known to reduce the magnitude of the peak rib deflections, injury risk curves developed from SID-IIs FRG data are not appropriate for use with SID-IIs build level D. PMHS injury data from three series of sled tests and one series of whole-body drop tests are paired with thoracic rib deflections from equivalent tests with SID-IIs build level D. Where possible, the rib deflections of SID-IIs build level D were scaled to adjust for differences in impact velocity between the PMHS and SID-IIs tests. Injury risk curves developed by the Mertz-Weber modified median rank method are presented and compared to risk curves developed by other parametric and non-parametric methods.
Technical Paper

Rollover Crash Tests-The Influence of Roof Strength on Injury Mechanics

1985-12-01
851734
Eight lateral dolly rollover tests were conducted on 1983 Chevrolet Malibusata nominal speed of 51.5 km/h (32 mi/h). Four of the vehicles had rollcages, and four had standard production roofs. Unrestrained outboard front GM Hybrid ill dummies with head and neck transducers were used. Numerous cameras documented the vehicle and dummy movements. Detailed vehicle kinematics data allowed quantitative analysis of the conditions for head and neck loads. For both roof structures, the dummies moved upward and outward from their seats due to rotation and acceleration of the vehicle. High head/neck loads were measured when the head contacted a part of the car experiencing a large change in velocity, often that part of the car which struck the ground. The results of this work indicate that roof strength is not an important factor in the mechanics of head/neck injuries in rollover collisions for unrestrained occupants.
Technical Paper

Research of the Relationship of Pedestrian Injury to Collision Speed, Car-type, Impact Location and Pedestrian Sizes using Human FE model (THUMS Version 4)

2012-10-29
2012-22-0007
Injuries in car to pedestrian collisions are affected by various factors such as the vehicle body type, pedestrian body size and impact location as well as the collision speed. This study aimed to investigate the influence of such factors taking a Finite Element (FE) approach. A total of 72 collision cases were simulated using three different vehicle FE models (Sedan, SUV, Mini-Van), three different pedestrian FE models (AM50, AF05, AM95), assuming two different impact locations (center and the corner of the bumper) and at four different collision speeds (20, 30, 40 and 50 km/h). The impact kinematics and the responses of the pedestrian model were validated against those in the literature prior to the simulations. The relationship between the collision speed and the predicted occurrence of head and chest injuries was examined for each case, analyzing the impact kinematics of the pedestrian against the vehicle body and resultant loading to the head and the chest.
Technical Paper

Research of Occupant kinematics and Injury values of Hybrid III, THOR, and human FE model in Oblique Frontal Impact

2016-04-05
2016-01-1521
This paper describes impact kinematics and injury values of Hybrid III AM50, THOR AM50 and THUMS AM50 in simulated oblique frontal impact conditions. A comparison was made among them in driver and passenger seat positions of a midsize sedan car finite element (FE) model. The simulation results indicated that the impact kinematics of THOR was close to that of THUMS compared to that of the Hybrid III. Both THOR and THUMS showed z-axis rotation of the rib cage, while Hybrid III did not. It was considered that the rib cage rotation was due primarily to the oblique impact but was allowed by flexibility of the lumbar spine in THOR and THUMS. Lateral head displacement observed in both THOR and THUMS was mostly induced by that rotation in both driver seat and passenger seat positions. The BrIC, thorax and abdominal injury values were close to each other between THOR and THUMS, while HIC15 and Acetabulum force values were different.
Technical Paper

Relationship of Crash Test Procedures to Vehicle Compatibility

2003-03-03
2003-01-0900
This paper examines the effect that test barriers currently used for frontal and side impact tests have had on collision compatibility between different-sized vehicles. The peak force levels generated by the vehicles’ front structures are one of the significant factors in determining vehicle compatibility. It is shown from principles of mechanics that the use of fixed barriers as a test device may lead to higher force levels for front ends of larger vehicles and thus increase the incompatibility between large and small vehicles. Review of data from various sources supports this conclusion that the peak force levels of vehicles’ front ends have increased in proportion to their test mass. Available crash data is also examined for a relationship between NCAP ratings of vehicles and the likelihood of serious and fatal injuries to occupants of those vehicles. These data do not show any relationship between the frontal NCAP ratings of vehicles and their rate of serious or fatal injuries.
Technical Paper

Reference PMHS Sled Tests to Assess Submarining of the Small Female

2018-11-12
2018-22-0003
In the last decade, extensive efforts have been made to understand the physics of submarining and its consequences in terms of abdominal injuries. For that purpose, 27 Post Mortem Human Subject (PMHS) tests were performed in well controlled conditions on a sled and response corridors were provided to assess the biofidelity of dummies or human body models. All these efforts were based on the 50th percentile male. In parallel, efforts were initiated to transfer the understanding of submarining and the prediction criteria to the THOR dummies. Both the biofidelity targets and the criteria were scaled down from the 50th percentile male to the 5th percentile THOR female. The objective of this project was to run a set of reference PMHS tests in order to check the biofidelity of the THOR F05 in terms of submarining. Three series of tests were performed on nine PMHS, the first one was designed to avoid submarining, the second and third ones were designed to result in submarining.
Technical Paper

Occupant Kinematics and Estimated Effectiveness of Side Airbags in Pole Side Impacts Using a Human FE Model with Internal Organs

2008-11-03
2008-22-0015
When a car collides against a pole-like obstacle, the deformation pattern of the vehicle body-side tends to extend to its upper region. A possible consequence is an increase of loading to the occupant thorax. Many studies have been conducted to understand human thoracic responses to lateral loading, and injury criteria have been developed based on the results. However, injury mechanisms, especially those of internal organs, are not well understood. A human body FE model was used in this study to simulate occupant kinematics in a pole side impact. Internal organ parts were introduced into the torso model, including their geometric features, material properties and connections with other tissues. The mechanical responses of the model were validated against PMHS data in the literature. Although injury criterion for each organ has not been established, pressure level and its changes can be estimated from the organ models.
Technical Paper

Investigation of Pelvic Injuries on Eighteen Post Mortem Human Subjects Submitted to Oblique Lateral Impacts

2016-11-07
2016-22-0005
The aim of this study was to investigate the sacroiliac joint injury mechanism. Two test configurations were selected from full scale car crashes conducted with the WorldSID 50th dummy resulting in high sacroiliac joint loads and low pubic symphysis force, i.e. severe conditions for the sacroiliac joint. The two test conditions were reproduced in laboratory using a 150-155 kg guided probe propelled respectively at 8 m/s and 7.5 m/s and with different shapes and orientations for the plate impacting the pelvis. Nine Post Mortem Human Subject (PMHS) were tested in each of the two configurations (eighteen PMHS in total). In order to get information on the time of fracture, eleven strain gauges were glued on the pelvic bone of each PMHS. Results - In the first configuration, five PMHS out of nine sustained AIS2+ pelvic injuries. All five presented sacroiliac joint injuries associated with pubic area injuries.
Technical Paper

Investigation of Anteroposterior Head-Neck Responses during Severe Frontal Impacts Using a Brain-Spinal Cord Complex FE Model

2006-11-06
2006-22-0019
Injuries of the human brain and spinal cord associated with the central nervous system (CNS) are seen in automotive accidents. CNS injuries are generally categorized into severe injuries (AIS 3+). However, it is not clear how the restraint conditions affect the CNS injuries. This paper presents a newly developed three-dimensional (3D) finite element head-neck model in order to investigate the biomechanical responses of the brain-spinal cord complex. The head model consists of the scalp, skull, and a detailed description of the brain including the cerebrum, cerebellum, brainstem with distinct white and gray matter, cerebral spinal fluid (CSF), sagittal sinus, dura, pia, arachnoid, meninx, falx cerebri, and tentorium. Additionally, the neck model consists of the cervical vertebral bodies, intervertebral discs, muscles, ligaments, spinal cord with white and gray matter, cervical pia, and CSF.
Technical Paper

Injury Risk Curves for the WorldSID 50th Male Dummy

2009-11-02
2009-22-0016
The development of the WorldSID 50th percentile male dummy was initiated in 1997 by the International Organization for Standardization (ISO/SC12/TC22/WG5) with the objective of developing a more biofidelic side impact dummy and supporting the adoption of a harmonized dummy into regulations. More than 45 organizations from all around the world have contributed to this effort including governmental agencies, research institutes, car manufacturers and dummy manufacturers. The first production version of the WorldSID 50th male dummy was released in March 2004 and demonstrated an improved biofidelity over existing side impact dummies. Full-scale vehicle tests covering a wide range of side impact test procedures were performed worldwide with the WorldSID dummy. However, the vehicle safety performance could not be assessed due to lack of injury risk curves for this dummy. The development of these curves was initiated in 2004 within the framework of ISO/SC12/TC22/WG6 (Injury criteria).
Technical Paper

Injury Estimation in Frontal Collisions for Automobiles Equipped with Event Data Recorders (EDRs)

2015-04-14
2015-01-1447
Event Data Recorders (EDRs) record valuable data in estimating the occupant injury severity after a crash. Advanced Automatic Collision Notification (AACN) with the use of EDR data will determine the potential extent of injuries to those involved in motor vehicle accidents. In order to obtain basic information in injury estimation using EDR data, frontal collisions for 29 vehicles equipped with EDRs were analyzed as a pilot study by retrieving the EDR data from the accident vehicles and collecting the occupant injury data from the database of an insurance company. As a result, the severity of occupant injury was closely related to the Delta V recorded on an EDR. However, there were several cases in which the predicted injury level was overestimated or underestimated by the Delta V. Therefore, caution is required when predicting the level of injury in frontal collisions based upon the Delta V alone.
Journal Article

Influence of Pre-impact Pedestrian Posture on Lower Extremity Kinematics in Vehicle Collisions

2016-04-05
2016-01-1507
Lower extremities are the most frequently injured body regions in vehicle-to-pedestrian collisions and such injuries usually lead to long-term loss of health or permanent disability. However, influence of pre-impact posture on the resultant impact response has not been understood well. This study aims to investigate the effects of preimpact pedestrian posture on the loading and the kinematics of the lower extremity when struck laterally by vehicle. THUMS pedestrian model was modified to consider both standing and mid-stance walking postures. Impact simulations were conducted under three severities, including 25, 33 and 40 kph impact for both postures. Global kinematics of pedestrian was studied. Rotation of the knee joint about the three axes was calculated and pelvic translational and rotational motions were analyzed.
Technical Paper

High-Speed Seatbelt Pretensioner Loading of the Abdomen

2006-11-06
2006-22-0002
This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused.
Technical Paper

Evaluation of Different Countermeasures and Packaging Limits for the FMVSS201U

2003-03-03
2003-01-0329
Different countermeasure designs for reducing the HIC (d) and to comply with FMVSS201U have been evaluated in many component-level studies by suppliers and OEMs. This study presents guidelines to support future countermeasure and interior designs. FMVSS201U has changed the way OEMs design interiors of the vehicles today. Most recently, much more work is being done to find ways to design interiors of the vehicles that comply with FMVSS201U while keeping the interiors aesthetically pleasing, attaining driver comfort and meeting driver visibility requirements. Introduction of side-rail airbags has further affected countermeasure design and packaging. This study focuses on several countermeasure designs in the side-rail region as used in a mid-sized vehicle implemented to meet FMVSS201U requirements and their efficiency with respect to Head Injury Criterion (HIC) reduction given a fixed packaging space.
Technical Paper

Development of Robust Design Method in Pedestrian Impact Test

2007-04-16
2007-01-0881
This paper describes that a method has been developed to estimate the range of the scatter of Head Injury Criterion (HIC) values in pedestrian impact tests, which could help to reduce the range of the scatter of HIC values by applying the stochastic method for Finite Element (FE) analysis. A major advantage of this method is that it enables the range of scatter of HIC values to be estimated and to explain the mechanics of the behavior. The test procedure of pedestrian impact allows some tolerances for the resultant conditions of impact such that the distance of actual impact location from the selected point is within 10 mm and the impact velocity is within ±0.7 km/h [1]. A HIC value calculated by impact simulation under a deterministic impact condition with the nominal input data does not necessarily represent the variation of measured data in impactor tests.
Technical Paper

Development of Pre-Crash Safety System for Heavy Duty Trucks

2006-10-31
2006-01-3486
In fatal accidents due to heavy duty trucks, the fatalities of occupants in passenger cars in which rear-end collision occur account for the largest percent. Collisions to the vehicles in traffic jams and collision to other accidents scenes on express ways can result in serious repercussions. Therefore the system which reduces the damage of collisions has long been demanded and here the world-first Pre-crash Safety (PCS) System for heavy duty trucks was developed. This system gives warning to the driver in case there is a possibility of collision with preceding vehicles, and activates the brakes to mitigate damage in case there is a higher possibility of collision. In order to get the maximum effect on the express ways where the trucks are in high speed, it is necessary to give warning and activate the brakes with relatively early timing.
Journal Article

Development of Injury Probability Functions for the Flexible Pedestrian Legform Impactor

2012-04-16
2012-01-0277
The goal of this study was to develop injury probability functions for the leg bending moment and MCL (Medial Collateral Ligament) elongation of the Flexible Pedestrian Legform Impactor (Flex-PLI) based on human response data available from the literature. Data for the leg bending moment at fracture in dynamic 3-point bending were geometrically scaled to an average male using the standard lengths obtained from the anthropometric study, based on which the dimensions of the Flex-PLI were determined. Both male and female data were included since there was no statistically significant difference in bone material property. Since the data included both right censored and uncensored data, the Weibull Survival Model was used to develop a human leg fracture probability function.
Technical Paper

Development and Field Performance of Indy Race Car Head Impact Padding

2001-11-01
2001-22-0019
The close-fitting cockpit of the modern Indy car single seat race car has the potential to provide a high level of head and neck impact protection in rear and side impacts. Crash investigation has shown that a wide variety of materials have been used as the padding for these cockpits and, as a result, produced varying outcomes in crashes. Additionally, these pads have not always been positioned for optimal performance. The purpose of this study was to investigate the head impact performance of a variety of energy-absorbing padding materials under impact conditions typical of Indy car rear impacts and to identify superior materials and methods of improving their performance as race car head pads. An extensive series of tests with the helmeted Hybrid III test dummy head and neck on an impact mini-sled was conducted to explore head padding concepts.
X