Refine Your Search

Topic

Author

Search Results

Technical Paper

Toyota Lean Combustion System - The Third Generation System

1993-03-01
930873
The third generation four valve lean combustion engine controlled by newly designed combustion pressure sensor has been developed. This combustion sensor composed of a metal diaphragm and a thin silicone layer formed on devitron piece detects the combustion pressure in the No.1 cylinder. Comparing with the lean mixture sensor equipped in the first and second generation lean combustion engine, the lean misfire limit was detected directly with this sensor, and the lean operation range was expanded, which realized lower fuel consumption and NOx emission. The output torque fluctuation was minimized by precisely compensating the fuel supplied to individual cylinder based on the crank angle sensor signal. Separated dual intake ports, one with the swirl control valve and the other with helical port shape was designed and a twin spray injection nozzle was equipped between those ports. The swirl ratio was lowered from 2.2 to 1.7.
Technical Paper

Toyota Central Injection (Ci) System for Lean Combustion and High Transient Response

1985-10-01
851675
Lean mixture operation and high transient response has been accomplished by the introduction of newly designed Central Injection (Ci) system. This paper describes the effects of Ci design variables on its performance. Lean mixture operation has been attained by optimizing the injection interval, injection timing and fuel spray angle in order to improve the cylinder to cylinder air-fuel ratio distribution. Both air-fuel distribution and transient engine response are affected by the fuel spray angle. Widening the fuel spray angle improves the air-fuel distribution but worsen the transient engine response. This inconsistency has been solved by off-setting the injector away from the center axis of the throttle body and optimizing the fuel spray angle.
Technical Paper

The Effects of Fuel Properties and Oxygenates on Diesel Exhaust Emissions

1995-10-01
952349
The effects of diesel fuel properties (aromatic content, cetane index and T90), cetane improver, oxygenates, high boiling point hydrocarbons and aromatics distribution on diesel exhaust emissions were studied under the Japanese 10-15 test cycle and the ECE+EUDC test cycle. The test vehicle was a TOYOTA COROLLA with a natural aspirated, 2.0L displacement, IDI diesel engine. It was demonstrated that particulate emissions are highly correlated with T90 and that NOx is affected by the aromatic content of fuel. A reduction in particulates emissions was observed in fuel with a lower cetane number by adding cetane improver, but this reduction was limited. Cetane improver had no effect on NOx emissions in the 45 # 60 cetane number range. Oxygenates reduced particulate emissions remarkably but had little effect on NOx emissions. A decrease in the soot in particulates was particularly observed.
Technical Paper

Study of Divided Converter Catalytic System Satisfying Quick Warm up and High Heat Resistance

1996-02-01
960797
Catalyst specifications and converter layouts were studied to identify the high conversion performance under various in-use driving conditions, high mileage intervals and extended life cycle. The effects of volumes, configuration, selection and loading distribution of precious metals, additive components and substrate type for catalyst were studied on engine dynamometers and vehicle tests to optimize a catalyst converter system. Moreover, model gas experiments were conducted to analyze deterioration mechanisms and conversion characteristics of catalysts. As a result, the concept of a divided catalyst converter system, which provides separate functions for a close-coupled and an under-floor catalyst, was found to be effective for the future exhaust system. For reducing HC emissions, the close-coupled catalyst should warm up quickly and resist a high temperature. The under-floor catalyst, located at a rather low temperature position, is durable and maintains high NOx conversion.
Journal Article

Study of Diesel Engine System for Hybrid Vehicles

2011-08-30
2011-01-2021
In this study, we combined a diesel engine with the Toyota Hybrid System (THS). Utilizing the functions of the THS, reducing engine friction, lowering the compression ratio, and adopting a low pressure loop exhaust gas recirculation system (LPL-EGR) were examined to achieve both low fuel consumption and low nitrogen oxides (NOx) emissions over a wide operating range. After applying this system to a test vehicle it was verified that the fuel economy greatly surpassed that of a conventional diesel engine vehicle and that NOx emissions could be reduced below the value specified in the Euro 6 regulations without DeNOx catalysts.
Journal Article

Simultaneous Reduction of NOx and PM in Diesel Exhaust Based on Electrochemical Reaction

2010-04-12
2010-01-0306
The emission regulations for diesel engines are continually becoming stricter to reduce pollution and conserve energy. To meet these increasingly stringent regulations, a new exhaust after-treatment device is needed. Recently, the authors proposed the simultaneous electrochemical reduction (ECR) system for diesel particulate matter (PM) and NOx. In this method, a gas-permeable electrochemical cell with a porous solid oxide electrolyte is used for PM filtering on the anode. Alkaline earth metal is coated on the cathode for NOx storage. Application of voltage to both electrodes enables the simultaneous reduction of PM and NOx by the forced flow of oxygen ions from the cathode to the anode (oxygen pumping). In this study, the basic characteristics of the ECR system were investigated, and a disk-shaped electrochemical cell was evaluated.
Technical Paper

Newly Developed AZ Series Engine

2001-03-05
2001-01-0327
The design of the newly developed Toyota AZ series 4 cylinder engine has been optimized through both simulations and experiments to improve heat transfer, cooling water flow, vibration noise and other characteristics. The AZ engine was developed to achieve good power performance and significantly reduced vibration noise. The new engine meets the LEV regulations due to the improved combustion and optimized exhaust gas flow. A major reduction in friction has resulted in a significant improvement in fuel economy compared with conventional models. It also pioneered a newly developed resin gear drive balance shaft.
Technical Paper

NOx Reduction is Compatible with Fuel Economy Through Toyota’s Lean Combustion System

1985-06-01
851210
T-LCS (TOYOTA LEAN COMBUSTION SYSTEM ) has made the engine possible to be operated with very lean mixture over 22 of air-fuel ratio, and achieved the NOx reduction and the improvement of fuel economy. This system has two features, one of which is the feed-back control of lean mixture strength using the LEAN MIXTURE SENSOR that has been newly developed. The other feature is the improved combustion through the SWIRL CONTROL VALVE and individual timing control of fuel injection for each cylinder. The influence of the test patterns, the vehicle weight and the air-fuel ratio on the exhaust emissions of lean combustion system has been examined and the results are reported in this paper.
Technical Paper

Modeling of Diesel Engine Components for Model-Based Control (Second Report): Prediction of Combustion with High Speed Calculation Diesel Combustion Model

2011-08-30
2011-01-2044
This paper describes the development of a High Speed Calculation Diesel Combustion Model that predicts combustion-related behaviors of diesel engines from passenger cars. Its output is dependent on the engine's operating parameters and on input from on-board pressure and temperature sensors. The model was found to be capable of predicting the engine's in-cylinder pressure, rate of heat release, and NOx emissions with a high degree of accuracy under a wide range of operating conditions at a reasonable computational cost. The construction of this model represents an important preliminary step towards the development of an integrated Model Based Control system for controlling combustion in diesel engines used in passenger cars.
Technical Paper

Modeling and Numerical Analysis of NOx Storage-Reduction Catalysts - On the Two Effects of Rich-Spike Duration

2001-03-05
2001-01-1297
Two effects of rich-spike duration on NOx-storing have been analyzed. The first one, that NOx-storing speed decreases as rich-spike duration increases, is explained as the influence of NOx diffusion in wash-coat layer, which is quantified by a simple mathematical expression for NOx-storing rate. The second one, a peculiar behavior of NOx-storing in appearance of the outlet NOx concentration, is clarified: Heat produced directly or indirectly (via oxygen storage in ceria) by rich-spike warms up the downstream part, which releases excess NOx at the raised temperature. Contributions of the oxygen storage and the carbonate of NOx-storage material are also discussed.
Technical Paper

Model Based Air Fuel Ratio Control for Reducing Exhaust Gas Emissions

1995-02-01
950075
In order to satisfy future demands of low exhaust emission vehicles (LEV), a new fuel injection control system has been developed for SI engines with three-way catalytic converters. An universal exhaust gas oxygen sensor (UEGO) is mounted on the exhaust manifold upstream of the catalytic converter to rapidly feedback the UEGO output signal and a heated exhaust gas oxygen sensor (HEGO) is mounted on the outlet of the converter to achieve an exact air fuel ratio control at stoichiometry. The control law is derived from mathematical models of dynamic air flow, fuel flow and exhaust oxygen sensors (HEGO and UEGO). Experimental results on FTP (Federal Test Procedure) exhaust emissions show a dramatic reduction of HC, CO and NOx emissions and a possibility of practical low emission vehicles at low cost.
Technical Paper

Life Cycle Inventory Study of Automotive Fuel Tank

1997-04-08
971177
As a means of effectively incorporating the concept of “life cycle” for reducing the environmental impact of the automobile, we carried out a life cycle inventory study on a part-by-part basis. The targets of our study are the fuel tanks that are made of different materials and manufacturing processes. One is made of steel, and the other is made of plastic, both perform identical functions. Our evaluation study encompasses the period from the manufacturing of the main materials until the disposal of the tanks. The evaluation items consist of the amount of energy consumed and the emissions (of CO2, NOx, SOx, and PM) that are released into the atmosphere. The results show that the plastic tank poses a greater burden in terms of the amount of energy consumed and the CO2 and NOx emitted.
Technical Paper

Improvements to Premixed Diesel Combustion with Ignition Inhibitor Effects of Premixed Ethanol by Intake Port Injection

2010-04-12
2010-01-0866
Premixed diesel combustion modes including low temperature combustion and MK combustion are expected to realize smokeless and low NOx emissions. As ignition must be delayed until after the end of fuel injection to establish these combustion modes, methods for active ignition control are being actively pursued. It is reported that alcohols including methanol and ethanol strongly inhibit low temperature oxidation in HCCI combustion offering the possibility to control ignition with alcohol induction. In this research improvement of diesel combustion and emissions by ethanol intake port injection for the promotion of premixing of the in-cylinder injected diesel fuel, and by increased EGR for the reduction of combustion temperature.
Technical Paper

Improvement of a Highly Efficient Hybrid Vehicle and Integrating Super Low Emissions

2000-10-16
2000-01-2930
A new hybrid system has been developed which features a highly efficient, clean gasoline engine, and a high performance exhaust catalyst system. The new system meets the strictest low emission standards in the world, while realizing a major reduction in CO2 emissions. The Toyota Hybrid System (THS) has improved engine performance, transaxle transmission efficiency, and various vehicle improvements for improving fuel consumption. It also employs a high performance catalyst, a rapid catalyst warm-up strategy, Toyota HC Adsorber and Catalyst System (Toyota-HCAC-System) and a Vapor Reducing Fuel Tank System. These combined technologies allow for the achievement of U.S. California SULEV, European Step 4 and Japanese J-ULEV emission requirements. It has also lowered the CO2 level to less than 120g/km in EC European mode.
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2002-03-04
2002-01-0732
In order to further improve the performance of NOx storage-reduction catalysts (NSR catalysts), focus was placed on their high temperature performance deterioration via sulfur poisoning and heat deterioration. The reactions between the basicity or acidity of supports and the storage element, potassium, were analyzed. It was determined that the high temperature performance of NSR catalysts is enhanced by the interaction between potassium and zirconia, which is a basic metal oxide. Also, a new zirconia-titania complex metal oxides was developed to improve high temperature performance and to promote the desorption of sulfur from the supports after aging.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

Hybrid System Development for a High-Performance Rear Drive Vehicle

2006-04-03
2006-01-1338
The original Toyota Hybrid System (THS) was installed in the Prius and was introduced in 1997 as the world's first mass-produced hybrid passenger car. THS has been continuously improved. In 2003 THS-II (marketed as Hybrid Synergy Drive [HSD]), was installed in a new larger Prius. In 2005 HSD was installed in two SUVs: the RX400h and Highlander Hybrid. This system achieved both V8 engine power performance and compact class fuel economy with outstanding emissions performance. In 2006, the HSD line-up is expanded to front-engine rear-wheel (FR) drive in the Lexus GS450h. This paper will explain this hybrid system which achieves both 4.5-liter class power performance and compact class fuel economy, while meeting the most stringent emission standard SULEV.
Technical Paper

Hybrid System Development for High-Performance All Wheel Drive Vehicle

2007-04-16
2007-01-0296
The original Toyota Hybrid System (THS) was installed in the Prius and was introduced in 1997 as the world's first mass-produced hybrid passenger car. Since then, THS has been continuously improved. In 2003 THS-II (marketed as Hybrid Synergy Drive [HSD]), was installed in a new larger Prius. In 2006 HSD was installed in a Rear Wheel Drive Vehicle: the LEXUS GS450h. This system achieved both 4.5-liter class power performance and compact class fuel economy with outstanding emissions performance. In 2007, this system is expanded to a mechanical all-wheel-drive(AWD) in the LEXUS LS600hL(with new V8 engine). This paper will explain this hybrid system which achieved both V12 class power performance and mid-size class fuel economy, while meeting the most stringent emission standard SULEV as a full-size vehicle.
Journal Article

High Concentration Ethanol Effect on SI Engine Emission

2010-04-12
2010-01-1268
From the energy security and CO2 reduction point of view, much attention has been paid to the usage of bio-fuel. Recently, highly concentrated ethanol is used in some areas (“E85”; 85% ethanol and 15% gasoline in North America and Sweden, and “ethanol”; 93% ethanol and 7% water in Brazil). In these regions, Flexible Fuel Vehicles FFVs are being introduced that are capable of using fuels with a wide range of ethanol concentrations. Advantages of highly concentrated ethanol in internal combustion engine applications are higher thermal efficiency obtained due to higher octane number, and a reduction of nitrogen oxides due to lower combustion temperatures On the other hand, the latent heat of vaporization for ethanol is greater than gasoline, causing poor cold startability and high NMOG emissions. This paper examines the effect of highly concentrated ethanol on exhaust emissions at cold start in a SI- engine.
Technical Paper

HCCI Combustion in DI Diesel Engine

2003-03-03
2003-01-0745
Ignition and combustion control of HCCI (Homogeneous Charge Compression Ignition) in DI (Direct Injection) Diesel Engine were examined. In this study, double injection technique was used by Common Rail injection system. The first injection was used as an early injection for fuel diffusion and to advance the changing of fuel to lower hydrocarbons (i.e. low temperature reaction). The second injection was used as an ignition trigger for all the fuel. It was found that the ignition of the premixed gas could be controlled by the second injection when the early injection was maintaining low temperature reaction. It was found that as the boost pressure increased, ignition timing advanced slightly and the rate of pressure increase markedly decreased. The rate of pressure increase is one of the factors concerning operation limit in this combustion. Therefore, the VNT (Variable Nozzle Turbo-charger) was applied to the production engine to allow boost pressure control.
X