Refine Your Search

Topic

Author

Search Results

Technical Paper

Validation Test Result Analysis of Plug-in Hybrid Vehicle

2013-04-08
2013-01-1464
In recent years, many various energy sources have been investigated as replacements for traditional automotive fossil fuels to help reduce CO2 emissions, respond to instabilities in the supply of fossil fuels, and reduce emissions of air pollutants in urban areas. Toyota Motor Corporation considers the plug-in hybrid vehicle (PHV), which can efficiently use electricity supplied from infrastructure, to be the most practical current solution to these issues. For this reason, Toyota began sales of the Prius Plug-in Hybrid in 2012 in the U.S., Europe and Japan. This is the first PHV to be mass-produced by Toyota Motor Corporation. Prior to this, in December 2009, Toyota sold 650 PHVs through lease programs for validation testing in the U.S., Europe and Japan. Additional 30 PHVs were introduced in China in March 2011 for the same objective.
Technical Paper

Toyota Lean Combustion System - The Third Generation System

1993-03-01
930873
The third generation four valve lean combustion engine controlled by newly designed combustion pressure sensor has been developed. This combustion sensor composed of a metal diaphragm and a thin silicone layer formed on devitron piece detects the combustion pressure in the No.1 cylinder. Comparing with the lean mixture sensor equipped in the first and second generation lean combustion engine, the lean misfire limit was detected directly with this sensor, and the lean operation range was expanded, which realized lower fuel consumption and NOx emission. The output torque fluctuation was minimized by precisely compensating the fuel supplied to individual cylinder based on the crank angle sensor signal. Separated dual intake ports, one with the swirl control valve and the other with helical port shape was designed and a twin spray injection nozzle was equipped between those ports. The swirl ratio was lowered from 2.2 to 1.7.
Technical Paper

Toyota Central Injection (Ci) System for Lean Combustion and High Transient Response

1985-10-01
851675
Lean mixture operation and high transient response has been accomplished by the introduction of newly designed Central Injection (Ci) system. This paper describes the effects of Ci design variables on its performance. Lean mixture operation has been attained by optimizing the injection interval, injection timing and fuel spray angle in order to improve the cylinder to cylinder air-fuel ratio distribution. Both air-fuel distribution and transient engine response are affected by the fuel spray angle. Widening the fuel spray angle improves the air-fuel distribution but worsen the transient engine response. This inconsistency has been solved by off-setting the injector away from the center axis of the throttle body and optimizing the fuel spray angle.
Technical Paper

Three-Way Catalytic Reaction in an Electric Field for Exhaust Emission Control Application

2021-04-06
2021-01-0573
To prevent global warming, further reductions in carbon dioxide are required. It is therefore important to promote the spread of electric vehicles powered by internal combustion engines and electric vehicles without internal combustion engines. As a result, emissions from hybrid electric vehicles equipped with internal combustion engines should be further reduced. Interest in catalytic reactions in an electric field with a higher catalytic activity compared to conventional catalysts has increased because this technology consumes less energy than other electrical heating devices. This study was therefore undertaken to apply a catalytic reaction in an electric field to an exhaust emission control. First, the original experimental equipment was built with a high voltage system used to conduct catalytic activity tests.
Technical Paper

The application of VHDL-AMS multi-domain HV simulation to the power performance and the fuel economy during warming up process

2011-05-17
2011-39-7245
In order to reduce CO2, EV and Hybrid Vehicle (HV) are effective. Those type vehicles have different power train from conventional vehicle. Those new power trains drastically improve their efficiency from conventional vehicle with keeping same or superior power performance. On the other hand, those vehicles have the issue for thermal energy shortage during warming up process. The thermal energy is very large. The thermal energy seriously affect on the fuel economy for HV and the mileage for EV. In this paper, the power performance, the fuel economy and the effect of heat energy recovery from the exhaust gas are discussed for HV. For the power performance, the simulated acceleration time of 0-100km/h was 11.8sec and the measured vehicle time was 11.9sec. The error between simulation and actual measurement result was 1.2%. As for the fuel economy, the energy management using exhaust gas heat exchange system improved 10.3% of the fuel consumption during warming up.
Technical Paper

The Humidity Control System Applied to Reduce Ventilation Heat Loss of HVAC Systems

2011-04-12
2011-01-0134
Vehicles have been more required to save energy against the background of the tendency of ecology. As the result of improving efficiency of internal combustion engines and adoption of electric power train, heat loss from engine coolant, which is used to heat the cabin, decreases and consequently additional energy may be consumed to maintain thermal comfort in the passenger compartment in winter. This paper is concerned with the humidity control system that realizes reduction of ventilation heat loss by controlling recirculation rate of the HVAC system by using highly accurate humidity sensor to evaluate risk of fogging on the windshield. As the results of the control, fuel consumption of hybrid vehicles decreases and maximum range of electric vehicles increases.
Technical Paper

The Effects of Fuel Properties and Oxygenates on Diesel Exhaust Emissions

1995-10-01
952349
The effects of diesel fuel properties (aromatic content, cetane index and T90), cetane improver, oxygenates, high boiling point hydrocarbons and aromatics distribution on diesel exhaust emissions were studied under the Japanese 10-15 test cycle and the ECE+EUDC test cycle. The test vehicle was a TOYOTA COROLLA with a natural aspirated, 2.0L displacement, IDI diesel engine. It was demonstrated that particulate emissions are highly correlated with T90 and that NOx is affected by the aromatic content of fuel. A reduction in particulates emissions was observed in fuel with a lower cetane number by adding cetane improver, but this reduction was limited. Cetane improver had no effect on NOx emissions in the 45 # 60 cetane number range. Oxygenates reduced particulate emissions remarkably but had little effect on NOx emissions. A decrease in the soot in particulates was particularly observed.
Technical Paper

Study of Divided Converter Catalytic System Satisfying Quick Warm up and High Heat Resistance

1996-02-01
960797
Catalyst specifications and converter layouts were studied to identify the high conversion performance under various in-use driving conditions, high mileage intervals and extended life cycle. The effects of volumes, configuration, selection and loading distribution of precious metals, additive components and substrate type for catalyst were studied on engine dynamometers and vehicle tests to optimize a catalyst converter system. Moreover, model gas experiments were conducted to analyze deterioration mechanisms and conversion characteristics of catalysts. As a result, the concept of a divided catalyst converter system, which provides separate functions for a close-coupled and an under-floor catalyst, was found to be effective for the future exhaust system. For reducing HC emissions, the close-coupled catalyst should warm up quickly and resist a high temperature. The under-floor catalyst, located at a rather low temperature position, is durable and maintains high NOx conversion.
Journal Article

Study of Diesel Engine System for Hybrid Vehicles

2011-08-30
2011-01-2021
In this study, we combined a diesel engine with the Toyota Hybrid System (THS). Utilizing the functions of the THS, reducing engine friction, lowering the compression ratio, and adopting a low pressure loop exhaust gas recirculation system (LPL-EGR) were examined to achieve both low fuel consumption and low nitrogen oxides (NOx) emissions over a wide operating range. After applying this system to a test vehicle it was verified that the fuel economy greatly surpassed that of a conventional diesel engine vehicle and that NOx emissions could be reduced below the value specified in the Euro 6 regulations without DeNOx catalysts.
Journal Article

Simultaneous Reduction of NOx and PM in Diesel Exhaust Based on Electrochemical Reaction

2010-04-12
2010-01-0306
The emission regulations for diesel engines are continually becoming stricter to reduce pollution and conserve energy. To meet these increasingly stringent regulations, a new exhaust after-treatment device is needed. Recently, the authors proposed the simultaneous electrochemical reduction (ECR) system for diesel particulate matter (PM) and NOx. In this method, a gas-permeable electrochemical cell with a porous solid oxide electrolyte is used for PM filtering on the anode. Alkaline earth metal is coated on the cathode for NOx storage. Application of voltage to both electrodes enables the simultaneous reduction of PM and NOx by the forced flow of oxygen ions from the cathode to the anode (oxygen pumping). In this study, the basic characteristics of the ECR system were investigated, and a disk-shaped electrochemical cell was evaluated.
Technical Paper

Research on Metal Air Battery

2011-05-17
2011-39-7233
Plug-in hybrid vehicles (PHVs) and/or electric vehicles (EVs) as sustainable mobility rapidly penetrate into a new market. Cruising ranges of PHVs and EVs strongly depend on the energy density of batteries. In this paper, we briefly introduce our achievements of metal air batteries as one of the innovative batteries with high energy density.
Journal Article

Research into Engine Friction Reduction under Cold Conditions - Effect of Reducing Oil Leakage on Bearing Friction

2014-04-01
2014-01-1662
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction.
Technical Paper

Newly Developed AZ Series Engine

2001-03-05
2001-01-0327
The design of the newly developed Toyota AZ series 4 cylinder engine has been optimized through both simulations and experiments to improve heat transfer, cooling water flow, vibration noise and other characteristics. The AZ engine was developed to achieve good power performance and significantly reduced vibration noise. The new engine meets the LEV regulations due to the improved combustion and optimized exhaust gas flow. A major reduction in friction has resulted in a significant improvement in fuel economy compared with conventional models. It also pioneered a newly developed resin gear drive balance shaft.
Technical Paper

NOx Reduction is Compatible with Fuel Economy Through Toyota’s Lean Combustion System

1985-06-01
851210
T-LCS (TOYOTA LEAN COMBUSTION SYSTEM ) has made the engine possible to be operated with very lean mixture over 22 of air-fuel ratio, and achieved the NOx reduction and the improvement of fuel economy. This system has two features, one of which is the feed-back control of lean mixture strength using the LEAN MIXTURE SENSOR that has been newly developed. The other feature is the improved combustion through the SWIRL CONTROL VALVE and individual timing control of fuel injection for each cylinder. The influence of the test patterns, the vehicle weight and the air-fuel ratio on the exhaust emissions of lean combustion system has been examined and the results are reported in this paper.
Technical Paper

Modeling of Diesel Engine Components for Model-Based Control (Second Report): Prediction of Combustion with High Speed Calculation Diesel Combustion Model

2011-08-30
2011-01-2044
This paper describes the development of a High Speed Calculation Diesel Combustion Model that predicts combustion-related behaviors of diesel engines from passenger cars. Its output is dependent on the engine's operating parameters and on input from on-board pressure and temperature sensors. The model was found to be capable of predicting the engine's in-cylinder pressure, rate of heat release, and NOx emissions with a high degree of accuracy under a wide range of operating conditions at a reasonable computational cost. The construction of this model represents an important preliminary step towards the development of an integrated Model Based Control system for controlling combustion in diesel engines used in passenger cars.
Technical Paper

Modeling and Numerical Analysis of NOx Storage-Reduction Catalysts - On the Two Effects of Rich-Spike Duration

2001-03-05
2001-01-1297
Two effects of rich-spike duration on NOx-storing have been analyzed. The first one, that NOx-storing speed decreases as rich-spike duration increases, is explained as the influence of NOx diffusion in wash-coat layer, which is quantified by a simple mathematical expression for NOx-storing rate. The second one, a peculiar behavior of NOx-storing in appearance of the outlet NOx concentration, is clarified: Heat produced directly or indirectly (via oxygen storage in ceria) by rich-spike warms up the downstream part, which releases excess NOx at the raised temperature. Contributions of the oxygen storage and the carbonate of NOx-storage material are also discussed.
Technical Paper

Model Based Air Fuel Ratio Control for Reducing Exhaust Gas Emissions

1995-02-01
950075
In order to satisfy future demands of low exhaust emission vehicles (LEV), a new fuel injection control system has been developed for SI engines with three-way catalytic converters. An universal exhaust gas oxygen sensor (UEGO) is mounted on the exhaust manifold upstream of the catalytic converter to rapidly feedback the UEGO output signal and a heated exhaust gas oxygen sensor (HEGO) is mounted on the outlet of the converter to achieve an exact air fuel ratio control at stoichiometry. The control law is derived from mathematical models of dynamic air flow, fuel flow and exhaust oxygen sensors (HEGO and UEGO). Experimental results on FTP (Federal Test Procedure) exhaust emissions show a dramatic reduction of HC, CO and NOx emissions and a possibility of practical low emission vehicles at low cost.
Technical Paper

Machine Learning Based Technology for Reducing Engine Starting Vibration of Hybrid Vehicles

2019-06-05
2019-01-1450
Engine starting vibration of hybrid vehicle with Toyota hybrid system has variations even in the same vehicle, and a large vibration that occurs rarely may cause stress to the passengers. The contribution analysis based on the vibration theory and statistical analysis has been done, but the primary factor of the rare large vibration has not been clarified because the number of factors is enormous. From this background, we apply machine learning that can reproduce multivariate and complicated relationships to analysis of variation factors of engine starting vibration. Variations in magnitude of the exciting force such as motor torque for starting the engine and in-cylinder pressure of the engine and timing of these forces are considered as factors of the variations. In addition, there are also nonlinear factors such as backlash of gears as a factor of variations.
Technical Paper

Life Cycle Inventory Study of Automotive Fuel Tank

1997-04-08
971177
As a means of effectively incorporating the concept of “life cycle” for reducing the environmental impact of the automobile, we carried out a life cycle inventory study on a part-by-part basis. The targets of our study are the fuel tanks that are made of different materials and manufacturing processes. One is made of steel, and the other is made of plastic, both perform identical functions. Our evaluation study encompasses the period from the manufacturing of the main materials until the disposal of the tanks. The evaluation items consist of the amount of energy consumed and the emissions (of CO2, NOx, SOx, and PM) that are released into the atmosphere. The results show that the plastic tank poses a greater burden in terms of the amount of energy consumed and the CO2 and NOx emitted.
Technical Paper

Investigation of Compressor Deposit in Turbocharger for Gasoline Engines (Part 1: Research on Deposit Formation Mechanism)

2023-04-11
2023-01-0410
Contribution to carbon neutrality is one of the most important challenges for the automotive industry. As CO2 emission has been reduced through electrification such as hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV), internal combustion engines (ICEs) equipped in those powertrain systems are still necessary for the foreseeable future, and continuous efforts to improve fuel efficiency are demanded. To improve powertrain thermal efficiency, direct-injection turbocharged gasoline engines have been widely utilized in recent years. Super lean-burn combustion engine has been researched as a next generation of turbocharged gasoline engines. Further utilization of turbochargers is expected. Compared with turbocharged downsized gasoline engines available in the current market, much higher boost pressure must be utilized to realize the super lean-burn engines. As a result, compressor housing temperature will be very high compared with the current market one.
X