Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Vehicle and Drive Cycle Simulation of a Vacuum Insulated Catalytic Converter

2016-04-05
2016-01-0967
A GT-SUITE vehicle-aftertreatment model has been developed to examine the cold-start emissions reduction capabilities of a Vacuum Insulated Catalytic Converter (VICC). This converter features a thermal management system to maintain the catalyst monolith above its light-off temperature between trips so that most of a vehicle’s cold-start exhaust emissions are avoided. The VICC thermal management system uses vacuum insulation around the monoliths. To further boost its heat retention capacity, a metal phase-change material (PCM) is packaged between the monoliths and vacuum insulation. To prevent overheating of the converter during periods of long, heavy engine use, a few grams of metal hydride charged with hydrogen are attached to the hot side of the vacuum insulation. The GT-SUITE model successfully incorporated the transient heat transfer effects of the PCM using the effective heat capacity method.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Technical Paper

Using Dynamic Modular Diesel Engine Models To Understand System Interactions and Performance

1999-03-01
1999-01-0976
This paper reviews the engine modeling program in the Powertrain Control Research Laboratory at the University of Wisconsin-Madison, focuses on simulation results obtained from a complete modular turbocharged diesel engine dynamic model developed in this lab, and suggests ways that dynamic engine system models can be used in the design process. It examines the dynamic responses and interactions between various components in the engine system, looks at how these components affect the overall performance of the system in transient and steady state operation.
Technical Paper

Using Artificial Neural Networks for Representing the Air Flow Rate through a 2.4 Liter VVT Engine

2004-10-25
2004-01-3054
The emerging Variable Valve Timing (VVT) technology complicates the estimation of air flow rate because both intake and exhaust valve timings significantly affect engine's gas exchange and air flow rate. In this paper, we propose to use Artificial Neural Networks (ANN) to model the air flow rate through a 2.4 liter VVT engine with independent intake and exhaust camshaft phasers. The procedure for selecting the network architecture and size is combined with the appropriate training methodology to maximize accuracy and prevent overfitting. After completing the ANN training based on a large set of dynamometer test data, the multi-layer feedforward network demonstrates the ability to represent air flow rate accurately over a wide range of operating conditions. The ANN model is implemented in a vehicle with the same 2.4 L engine using a Rapid Prototype Controller.
Journal Article

Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation

2013-04-08
2013-01-1605
Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively.
Journal Article

Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines with Negative Valve Overlap

2012-04-16
2012-01-1106
An experimental study is performed for homogeneous charge compression ignition (HCCI) combustion focusing on late phasing conditions with high cyclic variability (CV) approaching misfire. High CV limits the feasible operating range and the objective is to understand and quantify the dominating effects of the CV in order to enable controls for widening the operating range of HCCI. A combustion analysis method is developed for explaining the dynamic coupling in sequences of combustion cycles where important variables are residual gas temperature, combustion efficiency, heat release during re-compression, and unburned fuel mass. The results show that the unburned fuel mass carries over to the re-compression and to the next cycle creating a coupling between cycles, in addition to the well known temperature coupling, that is essential for understanding and predicting the HCCI behavior at lean conditions with high CV.
Technical Paper

Uncertainty Quantification of Wet Clutch Actuator Behaviors in P2 Hybrid Engine Start Process

2022-03-29
2022-01-0652
Advanced features in automotive systems often necessitate the management of complex interactions between subsystems. Existing control strategies are designed for certain levels of robustness, however their performance can unexpectedly deteriorate in the presence of significant uncertainties, resulting in undesirable system behaviors. This limitation is further amplified in systems with complex nonlinear dynamics. Hydro-mechanical clutch actuators are among those systems whose behaviors are highly sensitive to variations in subsystem characteristics and operating environments. In a P2 hybrid propulsion system, a wet clutch is utilized for cranking the engine during an EV-HEV mode switching event. It is critical that the hydro-mechanical clutch actuator is stroked as quickly and as consistently as possible despite the existence of uncertainties. Thus, the quantification of uncertainties on clutch actuator behaviors is important for enabling smooth EV-HEV transitions.
Technical Paper

Two-Point Spatial Velocity Correlations in the Near-Wall Region of a Reciprocating Internal Combustion Engine

2017-03-28
2017-01-0613
Developing a complete understanding of the structure and behavior of the near-wall region (NWR) in reciprocating, internal combustion (IC) engines and of its interaction with the core flow is needed to support the implementation of advanced combustion and engine operation strategies, as well as predictive computational models. The NWR in IC engines is fundamentally different from the canonical steady-state turbulent boundary layers (BL), whose structure, similarity and dynamics have been thoroughly documented in the technical literature. Motivated by this need, this paper presents results from the analysis of two-component velocity data measured with particle image velocimetry near the head of a single-cylinder, optical engine. The interaction between the NWR and the core flow was quantified via statistical moments and two-point velocity correlations, determined at multiple distances from the wall and piston positions.
Technical Paper

Two-Color Imaging of In-Cylinder Soot Concentration and Temperature in a Heavy-Duty DI Diesel Engine with Comparison to Multidimensional Modeling for Single and Split Injections

1998-02-23
980524
Two-Color imaging optics were developed and used to observe soot emission processes in a modern heavy-duty diesel engine. The engine was equipped with a common rail, electronically-controlled, high-pressure fuel injection system that is capable of up to four injection pulses per engine cycle. The engine was instrumented with an endoscope system for optical access for the combustion visualization. Multidimensional combustion and soot modeling results were used for comparisons to enhance the understanding and interpretation of the experimental data. Good agreement between computed and measured cylinder pressures, heat release and soot and NOx emissions was achieved. In addition, good qualitative agreement was found between in-cylinder soot concentration (KL) and temperature fields obtained from the endoscope images and those obtained from the multidimensional modeling.
Technical Paper

Two-Color Combustion Visualization of Single and Split Injections in a Single-Cylinder Heavy-Duty D.I. Diesel Engine Using an Endoscope-Based Imaging System

1999-03-01
1999-01-1112
An experimental study of luminous combustion in a modern diesel engine was performed to investigate the effect of injection parameters on NOX and soot formation via flame temperature and soot KL factor measurements. The two-color technique was applied to 2-D soot luminosity images and area-averaged soot radiation signals to obtain spatially and temporally resolved flame temperature and soot KL factor. The imaging system used for this study was based on a wide-angle endoscope that was mounted in the cylinder head and allowed different views of the combustion chamber. The experiments were carried out on a single-cylinder 2.4 liter D.I. diesel engine equipped with an electronically controlled common-rail injection system. Operating conditions were 1600 rpm and 75% load. The two-color results confirm that retarding the injection timing causes lower flame temperatures and NOX emissions but increased soot formation, independent of injection strategy.
Technical Paper

Turbocharger Matching for a 4-Cylinder Gasoline HCCI Engine Using a 1D Engine Simulation

2010-10-25
2010-01-2143
Naturally aspirated HCCI operation is typically limited to medium load operation (∼ 5 bar net IMEP) by excessive pressure rise rate. Boosting can provide the means to extend the HCCI range to higher loads. Recently, it has been shown that HCCI can achieve loads of up to 16.3 bar of gross IMEP by boosting the intake pressure to more than 3 bar, using externally driven compressors. However, investigating HCCI performance over the entire speed-load range with real turbocharger systems still remains an open topic for research. A 1 - D simulation of a 4 - cylinder 2.0 liter engine model operated in HCCI mode was used to match it with off-the-shelf turbocharger systems. The engine and turbocharger system was simulated to identify maximum load limits over a range of engine speeds. Low exhaust enthalpy due to the low temperatures that are characteristic of HCCI combustion caused increased back-pressure and high pumping losses and demanded the use of a small and more efficient turbocharger.
Technical Paper

Transmission Shift Strategies for Electrically Supercharged Engines

2019-04-02
2019-01-0308
This work investigates the potential improvements in vehicle fuel economy possible by optimizing gear shift strategies to leverage a novel boosting device, an electrically assisted variable speed supercharger (EAVS), also referred to as a power split supercharger (PSS). Realistic gear shift strategies, resembling those commercially available, have been implemented to control upshift and downshift points based on torque request and engine speed. Using a baseline strategy from a turbocharged application of a MY2015 Ford Escape, a vehicle gas mileage of 34.4 mpg was achieved for the FTP75 drive cycle before considering the best efficiency regions of the supercharged engine.
Technical Paper

Transient Spray Characteristics of a Direct-Injection Spark-Ignited Fuel Injector

1997-02-24
970629
This paper describes the transient spray characteristics of a high pressure, single fluid injector, intended for use in a direct-injection spark-ignited (DISI) engine. The injector was a single hole, pintle type injector and was electronically controlled. A variety of measurement diagnostics, including full-field imaging and line-of-sight diffraction based particle sizing were employed for spray characterization. Transient patternator measurements were also performed to obtain temporally resolved average mass flux distributions. Particle size and obscuration measurements were performed at three locations in the spray and at three injection pressures: 3.45 MPa (500 psi), 4.83 Mpa (700 psi), and 6.21 MPa (900 psi). Results of the spray imaging experiments indicated that the spray shapes varied with time after the start of injection and contained a leading mass, or slug along the center line of the spray.
Technical Paper

Toward Predictive Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1994-10-01
941897
The development of analytic models of diesel engine flow, combustion and subprocesses is described. The models are intended for use as design tools by industry for the prediction of engine performance and emissions to help reduce engine development time and costs. Part of the research program includes performing engine experiments to provide validation data for the models. The experiments are performed on a single-cylinder version of the Caterpillar 3406 engine that is equipped with state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In-cylinder gas velocity and gas temperature measurements have also been made to characterize the flows in the engine.
Technical Paper

Time-Resolved Emission Sampling in a Direct-Injection Engine

1999-09-28
1999-01-3309
Time-resolved measurements were made of the gas composition at the exhaust port of a direct-injection two-stroke engine operating at 2000 rpm and an air-fuel ratio of 30:1. A high-speed sampling valve capable of 1.0 ms (12 CAD) time resolution was used to collect samples 1 cm downstream of the exhaust port of the engine. The time-resolved NOx, CO2 and CO concentrations decreased continuously during the scavenging process due to the dilution by short-circuited air. The hydrocarbon emissions, however, behaved significantly differently from the other species. At the time of exhaust port opening the concentration was low, it reached a maximum value by BDC, then decreased slightly in the latter part of the scavenging event. The dilution rates calculated for the hydrocarbon data gave negative values, indicating that there was a significant production of hydrocarbons during the gas exchange period.
Journal Article

Three-Dimensional Three-Component Air Flow Visualization in a Steady-State Engine Flow Bench Using a Plenoptic Camera

2017-03-28
2017-01-0614
Plenoptic particle tracking velocimetry (PTV) shows great potential for three-dimensional, three-component (3D3C) flow measurement with a simple single-camera setup. It is therefore especially promising for applications in systems with limited optical access, such as internal combustion engines. The 3D visualization of a plenoptic imaging system is achieved by inserting a micro-lens array directly anterior to the camera sensor. The depth is calculated from reconstruction of the resulting multi-angle view sub-images. With the present study, we demonstrate the application of a plenoptic system for 3D3C PTV measurement of engine-like air flow in a steady-state engine flow bench. This system consists of a plenoptic camera and a dual-cavity pulsed laser. The accuracy of the plenoptic PTV system was assessed using a dot target moved by a known displacement between two PTV frames.
Technical Paper

Three Way Catalyst Modeling with Ammonia and Nitrous Oxide Kinetics for a Lean Burn Spark Ignition Direct Injection (SIDI) Gasoline Engine

2013-04-08
2013-01-1572
A Three-Way Catalyst (TWC) model with global TWC kinetics for lean burn DISI engines were developed and validated. The model incorporates kinetics of hydrocarbons and carbon monoxide oxidations, NOx reduction, water-gas and steam reforming and oxygen storage. Ammonia (NH₃) and new nitrous oxide (N₂O) kinetics were added into the model to study NH₃ and N₂O formation in TWC systems. The model was validated over a wide range of engine operating conditions using various types of experimental data from a lean burn automotive SIDI engine. First, well-controlled time-resolved steady state data were used for calibration and initial model tests. In these steady state operations, the engine was switched between lean and rich conditions for NOx emission control. Then, the model was further validated using a large set of time-averaged steady state data. Temperature dependencies of NH₃ and N₂O kinetics in the TWC model were examined and well captured by the model.
Technical Paper

Thermodynamic and Practical Benefits of Waste Energy Recovery Using an Electric Turbo-Generator Under Different Boosting Methods

2018-04-03
2018-01-0851
This paper provides insight into the tradeoffs between exhaust energy recovery and increased pumping losses from the flow restriction of the electric turbo-generator (eTG) assessed using thermodynamic principles and with a detailed GT-Power engine model. The GT-Power engine model with a positive displacement expander model was used to predict the influence of back pressure on in-cylinder residuals and combustion. The eTG is assessed for two boosting arrangements: a conventional turbocharger (TC) and an electrically assisted variable speed (EAVS) supercharger (SC). Both a low pressure (post-turbine) and high pressure (pre-turbine) eTG are considered for the turbocharged configuration. The reduction in fuel consumption (FC) possible over various drive cycles is estimated based on the steady-state efficiency of frequently visited operating points assuming all recovered energy can be reused at an engine efficiency of 30% with 10% losses in the electrical path.
Technical Paper

Theoretical, Computational and Experimental Investigation of Helmholtz Resonators: One-Dimensional versus Multi-Dimensional Approach

1994-03-01
940612
Helmholtz resonators are widely used for the noise reduction in vehicle induction and exhaust systems. This study investigates the effect of specific cavity dimensions of these resonators theoretically, computationally and experimentally. By considering one-dimensional wave propagation through distributed masses in the connector and cavity, a closed-form expression for the transmission loss of axisymmetric configurations is presented, thereby partially eliminating the limitations of a lumped-parameter analysis. Eight resonators of fixed neck geometry and cavity volume with length-to-diameter ratios of the volume varying from 0.32 to 23.92 are studied both computationally and experimentally. The first of the two computational approaches employed in the study implements a finite difference time domain technique to solve the nonlinear governing equations of one-dimensional compressible flow.
Technical Paper

The Potential of the Variable Stroke Spark-Ignition Engine

1997-02-24
970067
A comprehensive quasi-dimensional computer simulation of the spark-ignition (SI) engine was used to explore part-load, fuel economy benefits of the Variable Stroke Engine (VSE) compared to the conventional throttled engine. First it was shown that varying stroke can replace conventional throttling to control engine load, without changing the engine characteristics. Subsequently, the effects of varying stroke on turbulence, burn rate, heat transfer, and pumping and friction losses were revealed. Finally these relationships were used to explain the behavior of the VSE as stroke is reduced. Under part load operation, it was shown that the VSE concept can improve brake specific fuel consumption by 18% to 21% for speeds ranging from 1500 to 3000 rpm. Further, at part load, NOx was reduced by up to 33%. Overall, this study provides insight into changes in processes within and outside the combustion chamber that cause the benefits and limitations of the VSE concept.
X