Refine Your Search

Topic

Search Results

Standard

Tire Pressure Monitoring Systems (TPMS) for Aircraft

2020-09-18
CURRENT
ARP6137
A tire pressure monitoring system (TPMS) is a means to electronically measure and report the current tire pressure. Some systems are capable of transmitting the information to the flight deck while other systems are for use on the ground by maintenance personnel (only). This SAE Aerospace Recommended Practice (ARP) document is intended to establish overall component and system function guidelines and minimum performance levels for a TPMS. The system should visually indicate the tire inflation pressure status. These guidelines include, but are not limited to: a) Design recommendations for system components, which: 1 monitor tire inflation, and, 2 are located in/on the tire/wheel assembly, landing gear axle, and/or aircraft avionics compartment. b) Recommended performance and safety guidelines for a TPMS.
Standard

Tire Pressure Monitoring Systems (TPMS) for Aircraft

2021-04-21
WIP
ARP6137A
A tire pressure monitoring system (TPMS) is a means to electronically measure and report the current tire pressure. Some systems are capable of transmitting the information to the flight deck while other systems are for use on the ground by maintenance personnel (only). This SAE Aerospace Recommended Practice (ARP) document is intended to establish overall component and system function guidelines and minimum performance levels for a TPMS. The system should visually indicate the tire inflation pressure status. These guidelines include, but are not limited to: a) Design recommendations for system components, which: 1. monitor tire inflation, and, 2. are located in/on the tire/wheel assembly, landing gear axle, and/or aircraft avionics compartment. b) Recommended performance and safety guidelines for a TPMS.
Standard

Steering Effect of Tilted, Free-Swiveling Nose Gears

2017-05-04
HISTORICAL
AIR4358
This Aerospace Information Report (AIR) considers the origin of cornering forces generated by tilted, free-swiveling nose gears; the effect of various landing gear parameters on the measured cornering forces; and a method of towing aircraft to measure the resulting steering forces.
Standard

SKID CONTROL PERFORMANCE EVALUATION

1968-03-01
HISTORICAL
ARP862
This document provides recommended methods for measuring performance of skid control systems. It includes test items and equipment.
Standard

SKID CONTROL PERFORMANCE

1991-10-31
HISTORICAL
ARP862A
This Aerospace Recommended Practice (ARP) provides recommended methods for measuring performance of skid control systems. It includes test items and equipment.
Standard

Runway Condition Monitoring Systems

2022-04-13
WIP
AIR6697
This report will document Runway Condition Monitoring systems that provide information intended to reduce or eliminate aircraft runway excursions or overruns that may occur as a result of poor runway conditions.
Standard

Recommended Practice for Measurement of Static Mechanical Stiffness Properties of Aircraft Tires

2002-02-28
CURRENT
AIR1380B
The static mechanical stiffness properties of aircraft tires are fundamental to any computation of wheel and landing gear shimmy characteristics, and are important guides in anti-skid system and aircraft wheel design. While the mechanical stiffness properties of aircraft tires are frequency sensitive, the static or low frequency values are important because they are the ones most easily obtained by laboratory testing and are most commonly found in literature. The following recommended methods for measurement of such properties are believed to represent practices which will give reliable and repeatable measurements, either at one facility or among different facilities, using equipment which is commonly available in most tire testing installations.
Standard

RECOMMENDED PRACTICE FOR MEASUREMENT OF STATIC MECHANICAL STIFFNESS PROPERTIES OF AIRCRAFT TIRES

1997-01-01
HISTORICAL
AIR1380A
The static mechanical stiffness properties of aircraft tires are fundamental to any computation of wheel and landing gear shimmy characteristics, and are important guides in anti-skid system and aircraft wheel design. While the mechanical stiffness properties of aircraft tires are frequency sensitive, the static or low frequency values are important because they are the ones most easily obtained by laboratory testing and are most commonly found in literature. The following recommended methods for measurement of such properties are believed to represent practices which will give reliable and repeatable measurements, either at one facility or among different facilities, using equipment which is commonly available in most tire testing installations.
Standard

Overview of Aircraft Landing Gear Shimmy Analysis Methods

2021-06-10
CURRENT
AIR6280
This SAE Aerospace Information Report (AIR) provides an overview of the tire properties, strut properties, damper properties, and other landing gear mechanical properties that contribute to shimmy stability and are required for shimmy analysis. A variety of analysis techniques and assumptions are presented.
Standard

Landing Gear System Development Plan

2021-02-11
CURRENT
ARP1598C
This SAE Aerospace Recommended Practice (ARP) is intended to document the process of landing gear system development. This document includes landing gear system development plans for commercial/military, fixed wing, and rotary wing air vehicles.
Standard

Landing Gear System Development Plan

2023-05-31
WIP
ARP1598D
This SAE Aerospace Recommended Practice (ARP) is intended to document the process of landing gear system development. This document includes landing gear system development plans for commercial/military, fixed wing, and rotary wing air vehicles.
Standard

Landing Gear Stability

2023-04-17
WIP
AIR4894A
This SAE Aerospace Information Report (AIR) discusses the nature of landing gear stability, describes many common landing gear stability problems, and suggests approaches and methods for solving or avoiding them.
Standard

Landing Gear Based Weight and Balance Systems

2019-04-18
WIP
AIR6941
This document outlines historical systems which have used the landing gear as a sensor or installation point for full aircraft weight and balance systems. A number of systems have been developed, installed, certified, and placed in service but few systems remain in regular use. The document will capture the history of these systems, reasons (where known) for their withdrawal from service, and lessons learned.
Standard

Landing Gear (Engine Off) Taxi System

2021-02-03
CURRENT
AIR6246
This SAE Aerospace Information Report (AIR) will review new landing gear (engine off) taxi system technologies currently being developed by various companies and describe the basic design concepts and potential benefits and issues. This AIR will identify the associated systems that could be affected by this new technology. The document will review basic design and operational requirements, failure modes and identify system certification requirements that may need to be addressed. The technology is evolving as this paper is being written and the data present is currently up to date as of 2015.
Standard

Effects of Extremely Cold Temperature on Landing Gear Operation

2022-03-29
CURRENT
AIR6411
This SAE Aerospace Information Report (AIR) provides information on landing gear operation in cold temperature environments. It covers all operational aspects during ground handling, takeoff, and landing. It includes effects on tires, brakes, shock struts, seals, and actuators.
X