Refine Your Search

Topic

Search Results

Technical Paper

Why Liquid Phase LPG Port Injection has Superior Power and Efficiency to Gas Phase Port Injection

2007-08-05
2007-01-3552
This paper reports comparative results for liquid phase versus gaseous phase port injection in a single cylinder engine. It follows previous research in a multi-cylinder engine where liquid phase was found to have advantages over gas phase at most operating conditions. Significant variations in cylinder to cylinder mixture distribution were found for both phases and leading to uncertainty in the findings. The uncertainty was avoided in this paper as in the engine used, a high speed Waukesha ASTM CFR, identical manifold conditions could be assured and MBT spark found for each fuel supply system over a wide range of mixtures. These were extended to lean burn conditions where gaseous fuelling in the multi-cylinder engine had been reported to be at least an equal performer to liquid phase. The experimental data confirm the power and efficiency advantages of liquid phase injection over gas phase injection and carburetion in multi-cylinder engine tests.
Technical Paper

Top Land Crevice and Piston Deflection Effects on Combustion in a High Speed Rotary Valve Engine

2008-12-02
2008-01-3005
The Bishop Rotary Valve (BRV) has the opportunity for greater breathing capacity than conventional poppet valve engines. However the combustion chamber shape is different from conventional engine with no opportunity for a central spark plug. This paper reports the development of a combustion analysis and design model using KIVA-3V code to locate the ignition centers and to perform sensitivity analysis to several design variables. Central to the use of the model was the tuning of the laminar Arrhenius model constants to match the experimental pressure data over the speed range 13000-20000 rpm. Piston ring crevices lands and valve crevices is shown to be an important development area and connecting rod piston stretch has also been accommodated in the modeling. For the proposed comparison, a conventional 4 valve per cylinder poppet valve engine of nearly equal IMEP has been simulated with GT-POWER.
Technical Paper

The Lean Limit and Emissions at Near-Idle for a Gasoline HAJI System with Alternative Pre-Chamber Fuels

2007-09-16
2007-24-0120
Hydrogen assisted jet ignition (HAJI) is a pre-chamber ignition system for otherwise standard gasoline fueled spark ignition engines that involves the use of a chemically active turbulent jet to initiate combustion in lean fuel mixtures. HAJI burns the lean main charge rapidly and with almost no combustion variability, which allows for low hydrocarbon emissions and almost zero NOx, due to lower peak temperatures. This paper focuses on the effects of different pre-chamber fuels on combustion stability, lean limit and emissions in a single cylinder, HAJI equipped, CFR engine under a worst case, light load condition. Results indicate that the choice of pre-chamber fuel affects the main chamber lean limit but that emissions are not largely affected before this lean limit is reached. The lean limit was extended furthest, to λ = 2.5 with hydrogen, followed by λ = 2.35 with LPG, λ = 2.25 with CNG and λ = 2.15 with carbon monoxide.
Technical Paper

The Lean Burn Direct-Injection Jet-Ignition Flexi Gas Fuel LPG/CNG Engine

2009-11-02
2009-01-2790
This paper explores through engine simulations the use of LPG and CNG gas fuels in a 1.5 liter Spark Ignition (SI) four cylinder gasoline engine with double over head camshafts, four valves per cylinder equipped with a novel mixture preparation and ignition system comprising centrally located Direct Injection (DI) injector and Jet Ignition (JI) nozzles. With DI technology, the fuel may be introduced within the cylinder after completion of the valve events. DI of fuel reduces the embedded air displacement effects of gaseous fuels and lowers the charge temperature. DI also allows lean stratified bulk combustion with enhanced rate of combustion and reduced heat transfer to the cylinder walls creating a bulk lean stratified mixture.
Technical Paper

The Effects of Hot and Cool EGR with Hydrogen Assisted Jet Ignition

2007-08-05
2007-01-3627
Hydrogen assisted jet ignition (HAJI) is a pre-chamber ignition system for standard gasoline fueled engines that involves the use of a chemically active turbulent jet to initiate combustion in lean fuel mixtures. HAJI burns the lean main charge rapidly and with almost no combustion variability, which allows for low hydrocarbon emissions and almost zero NOx, due to lower peak temperatures. This paper focuses on the effects of internal and cooled external exhaust gas recirculation (EGR) on combustion parameters, emissions and thermal efficiency in a single cylinder HAJI equipped CFR engine. Experimental results indicate that replacing air with EGR in λ=2 mixtures can shift the lean limit at which NOx is negligible to mixtures as rich as λ=1.3, without a large penalty in hydrocarbon emissions and thermal efficiency.
Technical Paper

Spatial and Temporal Temperature Distributions in a Spark Ignition Engine Piston at WOT

2007-04-16
2007-01-1436
Two coupled finite element analysis (FEA) programs were written to determine the transient and steady state temperature distribution in a spark ignition engine piston. The programs estimated the temperatures at each crank angle degree (CAD) through warm-up to thermal steady state. A commercial FEA code was used to combine the steady state temperature distribution with the mechanical loads to find the stress response at each CAD for one complete cycle. The first FEA program was a very fast and robust non-linear thermal code to estimate spatial and time resolved heat flux from the combustion chamber to the aluminum alloy piston crown. This model applied the energy conservation equation to the near wall gas and includes the effects of turbulence, a propagating heat source, and a quench layer allowing estimates of local, instantaneous near-wall temperature gradients and the resulting heat fluxes.
Technical Paper

Similarity Rules and Parametric Design of Race Engines

2000-03-06
2000-01-0669
The paper compares 3.0 liter F1 engine solutions developed in compliance with the 1999 FIA Technical Regulations. A previous paper [28] presented a comparison of similar engines having 10 and 12 cylinders. Benefits of the 12 cylinders were clearly shown terms of pure engine performances. W12 engines made up of three banks of four cylinders are further investigated here. Similarity rules are presented first. These rules and non dimensional parameters from previous projects are then used to define geometric and operating parameters for “fully similar” engine solutions differing only in the bore/stroke ratio. Three different bore values are considered, B=89, 90 and 91 mm, thus producing bore/stroke ratios B/S=2.215, 2.290 and 2.367 respectively. These engine solutions are further refined by introducing variation of intake and exhaust pipe diameters and lengths and valve maximum lift and duration, thus producing “partly similar” engine solutions.
Technical Paper

Parametric Design of FIM WGP Engines

2002-12-02
2002-01-3317
The paper compares Road Racing World Championship Grand Prix (WGP) engine solutions developed in compliance with the 2002 Federation Internationale de Motocyclisme (FIM) Technical Regulations. Ad-hoc assumptions, similarity rules and nondimensional parameters from previous projects are used to define geometric and operating parameters for partly similar engine solutions basically differing in the number of cylinders, three, four, five or six, and the cylinder layout, in-line or V-angle. Results are shown as computed classical engine outputs versus engine speed, including brake, indicated and friction values. By increasing the number of cylinders, charging efficiency reduces, while thermal efficiency increases. Higher values of brake torque and power and lower values of brake specific fuel consumption are provided by the V-angle six cylinder engine.
Technical Paper

Optimum Control of an S.I. Engine with a λ=5 Capability

1995-02-01
950689
HAJI (Hydrogen Assisted Jet Ignition) is an advanced combustion initiation system for otherwise standard S.I engines. It utilises the fluid mechanics of a turbulent, chemically active jet, combined with the reliability of spark igniting rich hydrogen mixtures. The result is an extremely robust ignition system, capable of developing power from an engine charged with air-fuel mixtures as lean as λ = 5. Experiments have been performed using a single cylinder engine operating on gasoline in the speed range of 600-1800 r/min. Data are presented in the form of maps which describe fuel efficiency, combustion stability and emissions with respect to load, speed, air-fuel ratio and throttle. The results are incorporated into a model of a known engine and vehicle and this is used to estimate performance over the Federal drive-cycle.
Technical Paper

Optimizing the Design of the Air Flow Orifice or Restrictor for Race Car Applications

2007-08-05
2007-01-3553
Several race car competitions seek to limit engine power through a rule that requires all of the engine combustion air passes through a hole of prescribed diameter. As the approach and departure wall shapes to this hole, usually termed orifice or restrictor are not prescribed, there is opportunity for innovation in these shapes to obtain maximum flow and therefore power. This paper reports measurements made for a range of restrictor types including venturis with conical inlets and outlets of various angles and the application of slotted throats of the ‘Dall tube’ type. Although normal venturis have been optimized as subsonic flow measuring devices with minimum pressure losses, at the limit the flow in the throat is sonic and the down stream shocks associated with flow transition from sub-sonic to sonic are best handled with sudden angular changes and the boundary layer minimized by the corner slots between the convergent and divergent cones.
Technical Paper

On the Advantages of E100 Over Gasoline in Down-Sized, Turbo-Charged, Direct-Injected, Variable Valve Actuated, and Stoichiometric S.I. Engines

2011-10-06
2011-28-0020
Current flexi fuel gasoline and ethanol engines have efficiencies generally lower than dedicated gasoline engines. Considering ethanol has a few advantages with reference to gasoline, namely the higher octane number and the larger heat of vaporization, the paper explores the potentials of dedicated pure ethanol engines using the most advanced techniques available for gasoline engines, specifically direct injection, turbo charging and variable valve actuation. Computations are performed with state-of-the-art, well validated, engine and vehicle performance simulations packages, generally accepted to produce accurate results targeting major trends in engine developments. The higher compression ratio and the higher boost permitted by ethanol allows larger top brake efficiencies than gasoline, while variable valve actuation produces small penalties in efficiency changing the load.
Technical Paper

Lean Mixture Ignition Systems for CNG in Diesel Applications

2004-01-16
2004-28-0017
A high compression ratio, single cylinder, open chamber diesel engine was converted to operate on homogenously charged compressed natural gas (CNG) with the aim of minimising pollutant emissions such as oxides of nitrogen, particulate matter and carbon dioxide. Three ignition systems were tested including spark ignition (SI), diesel pilot ignition (DPI) and hydrogen assisted jet ignition (HAJI). Irrespective of ignition system used, the efficiency of the engine operating on CNG was significantly reduced at part load compared to diesel. This was predominantly due to a greater amount of unburnt hydrocarbons, higher cycle-by-cycle variability, slow and partial burns and increased heat transfer to the walls. DPI and HAJI systems were able to extend the lean limit to lambda 2.7 and 3.3 respectively, however this did not result in efficiency gains.
Technical Paper

Highly Turbocharging a Restricted, Odd Fire, Two Cylinder Small Engine - Design, Lubrication, Tuning and Control

2006-12-05
2006-01-3637
This paper describes the mechanical component design, lubrication, tuning and control aspects of a restricted, odd fire, highly turbocharged (TC) engine for Formula SAE competition. The engine was specifically designed and configured for the purpose, being a twin cylinder inline arrangement with double overhead camshafts and four valves per cylinder. Most of the engine components were specially cast or machined from billets. A detailed theoretical analysis was completed to determine engine specifications and operating conditions. Results from the analysis indicated a new engine design was necessary to sustain highly TC operation. Dry sump lubrication was implemented after initial oil surge problems were found with the wet sump system during vehicle testing. The design and development of the system is outlined, together with brake performance effects for the varying systems.
Technical Paper

Highly Turbocharging a Flow Restricted Two Cylinder Small Engine - Turbocharger Development

2007-04-16
2007-01-1562
This paper describes the turbocharger development of a restricted 430 cm3 odd firing two cylinder engine. The downsized test engine used for development was specifically designed and configured for Formula SAE, SAE's student Formula race-car competition. A well recognised problem in turbocharging Formula SAE engines arises from the rules, which dictate that the throttle and air intake restrictor must be on the suction side of the compressor. As a consequence of upstream throttling, oil from the compressor side seal assembly is drawn into the inlet manifold. The development process used to solve the oil consumption issue for a Garrett GT-12 turbocharger is outlined, together with cooling and control issues. The development methodology used to achieve high pressure ratio turbocharging is discussed, along with exhaust manifold development and operating limitations. This includes experimental and modeling results for both pulse and constant pressure type turbocharging.
Technical Paper

Gas Assisted Jet Ignition of Ultra-Lean LPG in a Spark Ignition Engine

2009-04-20
2009-01-0506
Gas assisted jet ignition is an advanced prechamber ignition process that allows ignition of ultra lean mixtures in an otherwise standard spark ignition engine. The results presented in this paper indicate that in a gas assisted jet ignition system fuelled with LPG in both the main chamber and prechamber, the lean limit can be extended to between λ = 2-2.35, depending on the load and speed. Although the fuel combinations that employ H2 as the prechamber fuel can extend the lean limit furthest (λ = 2.5-2.6), the extension enabled by the LPG-LPG prechamber-main chamber combination provides lower NOx emission levels at similar λ. In addition, when LPG is employed in place of gasoline as the main chamber fuel, hydrocarbon emissions are significantly reduced, however with a slight penalty in indicated mean effective pressure due to the gaseous state of the LPG.
Technical Paper

Exploring the Charge Composition of SI Engine Lean Limits

2009-04-20
2009-01-0929
In this paper the experimental performance of the lean limits is examined for two different types of engines the first a dedicated LPG high compression ratio 2-valve per cylinder engine (Ford of Australia MY 2001 AU Falcon) and the second a gasoline moderate compression 4-valve per cylinder variant of the same engine (Ford of Australia MY 2006 BF Falcon). The in-cylinder composition at the lean limit over a range of steady state operating conditions is estimated using a quasi-dimensional model. This makes it possible to take into account the effects of both residual fraction and fresh charge diluents (EGR and excess air) that allow the exploration of a modeled lean limit performance [1, 2]. The results are compared to the predictions from a model for combustion variability applied to the quasi-dimensional model operating in optimization mode.
Technical Paper

Enhanced ICSI Engine Performance With Particle Swarm Optimization

2004-01-16
2004-28-0075
Increasing engine power and efficiency using a particle swarm optimization technique is investigated by using thermodynamics based quasi-steady engine simulation model. A simplified engine friction model is also incorporated to estimate the brake power output. Further, a simple knock model is used to make sure of knock free engine operation. Model is calibrated and validated to a Ford Falcon AU six-cylinder gasoline engine. Nine different engine-operating parameters are considered as input variables for the optimization; spark timing, equivalence ratio, compression ratio, inlet and exhaust vale opening timing and durations, maximum inlet valve lift and manifold pressure. Significant improvement of the engine power output for a given amount of induced gas is observed with the optimized conditions when compared to the corresponding power output with the reference engines normal operating conditions.
Technical Paper

Development of a Lubrication Model for the CMC Scotch Yoke Mechanism

1998-02-23
980119
This paper presents some of the modelling and experimental work being carried out at the University of Melbourne, in collaboration with CMC Research, on their new Scotch yoke engine concept. It begins with an overview of the engine, its compactness and friction advantages. The development of a one dimensional ‘squeeze film’ model is outlined and some simulation results are presented for both a motored and fired engine. A novel feature of the model is the introduction of an ‘un-filled factor’ to account for the dynamics of the oil film volume particular to this type of linear bearing. Experimental results are presented to highlight the important features and serve as a means of validating the model predictions. Comparisons show that the squeeze model correlates reasonably well with the experimental data and it is concluded that the current, flat, bearing design works by a predominantly squeeze film mechanism.
Technical Paper

Development of a 430cc Constant Power Engine for FSAE Competition

2006-04-03
2006-01-0745
This paper describes the design and development of an engine with constant power for SAE's student Formula race-car competition, allowing the avoidance of gear shifting for much of the Autocross event. To achieve constant power for over 50% of the speed range, turbocharging was adopted with a boost pressure ratio of 2.8 at mid-range speeds and applied to an engine capacity of 430 cc. This engine was specifically designed and configured for the purpose, being a twin cylinder in-line arrangement with double overhead camshafts. Most of the engine components were specially cast or machined from billets. The capacity was selected to minimise frictional losses and thus increase delivered power along with dry sump lubrication and a three speed gear box. The engine manifolds and plenums were designed using a CAE application and proved to be well suited to the task resulting in excellent agreement between predicted and actual performance.
Technical Paper

Design of the Fiat Auto Corse ITC 96 Racing Engine - Part I: Valve Lift Profiles and Timings

1998-02-01
980124
The paper describes the fluid dynamic design of the 2.5 liter V6 engine developed by Fiat Auto Corse for the 1996 International Touring Car Series (690 engine). The paper enters into details concerning the definition of valve lift profiles and timings, and provides highlights on the configuration able to optimize the engine in its overall complexity.
X