Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Comparison of Exhaust Pipe, Dilution Tunnel and Roadside Diesel Particulate SOF and Gaseous Hydrocarbon Emissions

1988-02-01
880351
The solvent organic fraction (SOF) of particulates from the exhaust pipe of a diesel engine, a dilution tunnel and a roadside sample are compared. Three different techniques of SOF analysis are also compared, vacuum oven, solvent extraction and pyroprobe/GC. Gaseous hydrocarbons and the methane contribution were measured in the exhaust pipe throughout the speed and load range of the engine at 185 C and 2 C. The unburnt hydrocarbons decreased with air/fuel ratio for all speeds and there was an overall decrease in emissions with increasing speed. The differential temperature technique showed the maximum mass of hydrocarbon which could condense from the gas phase onto the particulate as the SOF. The method compared well with the actual SOF of the tunnel particulate.
Technical Paper

Combustion and Emissions Performance of Simulated Syngas/Diesel Dual Fuels in a CI Engine

2022-08-30
2022-01-1051
Small diesel engines are a common primer for micro and mini-grid systems, which can supply affordable electricity to rural and remote areas, especially in developing countries. These diesel generators have no exhaust after-treatment system thus exhaust emissions are high. This paper investigates the potential of introducing simulated synthetic gas (syngas) to diesel in a small diesel engine to explore the opportunities of widening fuel choices and reducing emissions using a 5.7kW single cylinder direct injection diesel generator engine. Three different simulated syngas blends (with varying hydrogen content) were prepared to represent the typical syngas compositions produced from downdraft gasification and were injected into the air inlet. In-cylinder pressure, ignition delay, premixed combustion, combustion stability, specific energy consumption (SEC), and gaseous and particle emissions were measured at various power settings and mixing ratios.
Technical Paper

Comparison of Exhaust Emissions and Particulate Size Distribution for Diesel, Biodiesel and Cooking Oil from a Heavy Duty DI Diesel Engine

2008-04-14
2008-01-0076
Rape oil, as used in fresh cooking oil (FCO), and the methyl ester derived from waste cooking oil (WCOB100) were tested as 100% biofuels (B100) on a heavy duty DI diesel engine under steady state conditions. The exhaust emissions were measured and compared to those for conventional low sulphur (<50ppm) diesel fuel. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Euro2 Phaser Engine, fitted with an oxidation catalyst. The engine out gaseous emissions results for WCOB100 showed a large decrease in CO and HC emissions, but a small increase in NOx emissions compared to diesel. However, for FCO the CO and HC increased relative to WCOB100 and CO was higher than for diesel, indicating deterioration in fuel/air mixing. The particulate matter (PM) emissions for WCOB100 were similar to those for diesel at the 23kw condition, but greatly reduced at 47kw. The FCO produced higher engine out PM at both power conditions due to a higher volatile organic fraction (VOF).
Technical Paper

Condensable and Gaseous Hydrocarbon Emissions and Their Speciation for a Real World SI Car Test

2007-01-23
2007-01-0062
Condensable and gaseous hydrocarbon emissions and speciation of the hydrocarbons have been investigated using a EURO1 emissions compliant SI (Spark Ignition) car. Exhaust gas samples were simultaneously collected upstream and downstream of the catalyst using a system containing cold ice trap, resin, particulate filter block and Teflon gas sampling bag. GC (Gas Chromatography) was employed to analyze for hydrocarbons and 16 of the more significant hydrocarbons are reported. The test was carried out using both cold start and hot start driving cycles. Results show that the benzene and toluene were major species emitted from the tailpipe under cold start conditions. Methylnaphthalene was a dominated hydrocarbon under hot start conditions. The cold start had significant influence on hydrocarbon emissions. The catalyst out benzene emissions for cold start was thirty times higher than that for hot start.
Technical Paper

Diesel Fuel Dilution and Particulate Absorption Contamination in Used Lubricating Oil

1989-09-01
892080
Lubricating oil taken from the sump of a direct injection diesel engine has been analysed for the concentration of hydrocarbon contamination over a period of time. The oil was filtered and the sediment SOF analysed together with the filtrate. The results showed that there was an increase in the contamination in the used oil for both the filtrate and sediment hydrocarbon contamination. The carbon number distribution of the filtrate and sediment SOF were different. The filtrate representing contamination of the oil by fuel dilution and the sediment SOF contamination by particulates adsorbed into the oil in the combustion chamber. The highest contribution to the hydrocarbon contamination of the oil was from the filtrate in the early ageing period with an increasing contribution from the SOF of the sediment.
Journal Article

Effect of Multifunctional Fuel Additive Package on Fuel Injector Deposit, Combustion and Emissions using Pure Rape Seed Oil for a DI Diesel

2009-11-02
2009-01-2642
This work investigates the effect of a multifunctional diesel fuel additive package used with RapeSeed Oil (RSO) as a fuel in a DI heavy duty diesel engine. The effects on fuel injectors’ cleanliness were assessed. The aim was to maintain combustion performance and preventing the deterioration of exhaust emissions associated with injector deposit build up. Two scenarios were investigated: the effect of deposit clean-up by a high dose of the additive package; and the effect of deposit prevention using a moderate dose of the additive package. Engine combustion performance and emissions were compared for each case against use of RSO without any additive. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, fitted with an oxidation catalyst and meeting the Euro II emissions limits. The tests were conducted under steady state conditions of 23kW and 47kW power output at an engine speed of 1500 rpm.
Technical Paper

Effects of an on Line Bypass Oil Recycler on Emissions with Oil Age for a Bus Using in Service Testing

2001-09-24
2001-01-3677
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical EURO 2 emissions compliance single decker buses, fitted with Cummins 6 cylinder 8.3 litre turbocharged intercooled engines and coded as Bus 4063 and 4070. These vehicles had emissions characteristics that were significantly different, in spite of their similar age and total mileage. Bus 4063 showed an apparent deterioration on emissions with time while Bus 4070 showed a stabilised trend on emissions with time for their baseline tests without the recycler fitted. Comparison was made with the emissions on the same vehicles and engines with and without the on-line bypass oil recycler. Engine exhaust emissions were measured about every 2000 miles.
Technical Paper

Impact of Traffic Conditions and Road Geometry on Real World Urban Emissions Using a SI Car

2007-04-16
2007-01-0308
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction and uphill/downhill road, and thereby the impact of road topography on emissions. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst could be monitored. Different turning movements (driving events) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was run until hot stable operating conditions were achieved before each test, thereby negating cold start effects.
Technical Paper

Improvements in Lubricating Oil Quality by an On Line Oil Recycler for a Refuse Truck Using in Service Testing

2001-03-05
2001-01-0699
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical EURO 1 emissions compliance refuse trucks, fitted with Perkins Phazer 210Ti 6 litre turbocharged intercooled engines and coded as RT320 and RT321. These vehicles had lubricating oil deterioration and emissions characteristics that were significantly different, in spite of their similar age and total mileage. RT321 showed an apparent heavier black smoke than RT320. Comparison was made with the oil quality and fuel and lubricating oil consumption on the same vehicles and engines with and without the on-line bypass oil recycler. Engine oils were sampled and analysed about every 400 miles. Both vehicles started the test with an oil drain and fresh lubricating oil.
Technical Paper

Influence of Catalyst and Exhaust System on Particulate Deposition and Release from an IDI Diesel Passenger Car under Real World Driving

2002-03-04
2002-01-1006
The influence of a diesel oxidation catalyst and a practical exhaust system with two silencers on the storage and release of particulates during cold start real world driving was investigated using a Ford 1.8 litre IDI Mondeo diesel passenger car. Particulates were sampled simultaneously at three points in the exhaust using an on-board gravimetric filter paper method. The test was carried out on two different on-road driving cycles: a simulated ECE 15 cycle to represent free moving low power city driving conditions, and a traffic jam and high speed suburban driving cycle. The results showed that the particulate matter was deposited in the oxidation catalyst during cold start and deposited in the exhaust system downstream of the catalyst throughout the test period. The particulate deposition and release downstream of the catalyst were influenced by the previous operational history of the vehicle.
Technical Paper

Influence of Oil Age on Particulate Size Distributions with an On Line Oil Recycler from an IDI Passenger Car Diesel Engine

2004-10-25
2004-01-2905
Mass weighted size distributions of particulate emissions as a function of oil age were investigated using a set of Anderson Impactors on an IDI passenger car engine test. This engine was fitted with an on-line bypass lubricating oil recycler aiming to extend the oil life, reduce fuel consumption and exhaust emissions. A stop start test cycle was used with a cold start each time and a typical cycle period of 2∼3 hours. The whole test was carried out for nearly 500 hours. The first 310 hours of testing were with the oil recycler fitted and thereafter the test continued with the oil recycler disconnected. The results show that 60∼80% of mass particulates were smaller than 1.1 μm in aerodynamic diameter with the oil recycler fitted and this percentage was reduced to 40∼60% after disconnection of the oil recycler. The changes in size distribution with oil age mainly happened in the size ranges of 1.1∼0.65 μm, 0.65∼0.43 μm and <0.43 μm.
Technical Paper

Oil Quality with Oil Age in an IDI Diesel Passenger Car Using an On Line Lubricating Oil Recycler Under Real World Driving

2001-05-07
2001-01-1898
A method of cleaning lubricating oil on line was investigated using a fine 1 micron bypass particulate filter, followed by an infra-red heater to remove water and light diesel fractions in the oil. A Ford 1.8 litre IDI diesel passenger car was investigated under real world driving conditions. Comparison was made with the oil quality without the recycler. All the tests were carried out on the same vehicle over 7000 miles with and without the recycler. The results showed that the on line oil recycler cleaning system reduced the rate of reduction of TBN and the rate of increase of TAN by 54% and 50% respectively. The reduction in the rate of carbon accumulation in the oil was 42%. There was also a reduction in fuel dilution. All the wear metals in the oil were greatly reduced by the recycler, the iron was reduced by 76%, the lead was reduced by 85% and the aluminum was totally removed.
Technical Paper

Reduction of Exhaust Emissions by a Synthetic Lubricating Oil with Higher Viscosity Grade and Optimized Additive Package for a Heavy Duty DI Diesel Engine Test

2008-10-06
2008-01-2489
A 10W-50 G4 synthetic lubricating oil (EULUBE oil) was tested on a heavy duty DI diesel engine under two steady state conditions. The exhaust emissions were measured and compared to a 10W-30 CF semi-synthetic lubricating oil. The EULUBE oil contained the friction reduction additive to improve the fuel economy. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, with emission compliance of EURO 2, fitted with an oxidation catalyst. The exhaust samples were taken both upstream and downstream of the catalyst. Gaseous and particulates emissions were measured. Particulate size distribution was measured using ELPI and SMPS. The particulate samples were analysed for VOF, carbon and ash. A MEXA7100 gas analysis system was used for legislated gas analysis such as CO, CO2, NOx and total hydrocarbons. The results showed a significant reduction by synthetic lubricating oil in gaseous hydrocarbon emissions, total particulate mass, particulate carbon and ash.
Technical Paper

Study of Emission and Combustion Characteristics of RME B100 Biodiesel from a Heavy Duty DI Diesel Engine

2007-01-23
2007-01-0074
A rapeseed methyl ester biodiesel RMEB100 was tested on a heavy duty DI diesel engine under steady state conditions. The combustion performance and exhaust emissions were measured and compared to a standard petroleum derived diesel fuel. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, with emission compliance of EURO 2, fitted with an oxidation catalyst. The exhaust samples were taken both upstream and downstream of the catalyst. Particulates were collected and analysed for VOF, carbon and ash. A MEXA7100 gas analysis system was used for legislated gas analysis such as CO, CO2, NOx and total hydrocarbons. A FTIR analysis system was deployed for gaseous hydrocarbon speciation, which is capable of speciating up to 65 species. The results showed a significant reduction in total particulate mass, particulate VOF, CO, THC and aldehydes when using RMEB100.
Technical Paper

Study of the Emissions Generated at Intersections for a SI Car under Real World Urban Driving Conditions

2006-04-03
2006-01-1080
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst monitored could be included in the analysis. Different turning movements (driving patterns) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was hot stable running conditions before each test, thereby negating cold start effects. To demonstrate the influence of the junction on tail-pipe emissions and fuel consumption, distance based factors were determined that compared the intersection drive-through measurements with steady speed (state) runs. Fuel consumption was increased at intersections by a factor of 1.3∼5.9.
Technical Paper

The Aging of Lubricating Oil, The Influence of Unburnt Fuel and Particulate SOF Contamination

1987-11-01
872085
The role of lubricating oil as a sink for polycyclic aromatic compounds (PAC) and alkanes derived from unburnt fuel is described for two different oils used in two different DI diesel engines. The diesel engines used were, an older technology Petter AV1 single cylinder mine pumping engine and a Perkins 4.236 current technology engine. Analysis of the oil was by gas chromatography using simultaneous parallel triple detection, allowing analysis of hydrocarbons and nitrogen and sulphur containing compounds. Analysis of unused lubricating oil showed negligible concentrations of PAC and low molecular weight alkanes (< C20). The oil from each engine was analysed periodically during use and showed a rapid and significant accumulation of hydrocarbons which reached significant concentrations after only 10 hours use. The older technology engine showed a much higher accumulation rate.
Technical Paper

The Composition of Spark Ignition Engine Steady State Particulate Emissions

1999-03-01
1999-01-1143
The contribution of spark ignition engine particulate emissions to total particulate emissions and the published data on SI engine emission levels are reviewed. There is a wide spread of published data and the worst SI engines would exceed the future diesel particulate emissions regulations. However, most modern SI engines with a catalyst will easily meet the future diesel particulate emissions regulations, although their particulates emissions are a significant fraction of these regulations. Steady state lambda 1 results are presented for a Ford Zetec SI engine at conditions representative of the urban driving cycle at 5 and 10kW power output and also at WOT. The impact of a cold start and EGR at the two low power conditions was also investigated. The particulate emissions for petrol were of the order of 5% of the future (2005) diesel emissions regulations and were approximately 20 mg/kg fuel (about 2 mg/mile or 1.3 mg/km).
Technical Paper

The Effect of Ambient Temperature on Cold Start Urban Traffic Emissions for a Real World SI Car

2004-10-25
2004-01-2903
The influence of ambient temperature on exhaust emissions for an instrumented Euro 1 SI car was determined. A real world test cycle was used, based on an urban drive cycle that was similar to the ECE urban drive cycle. It was based on four laps of a street circuit and an emissions sample bag was taken for each lap. The bag for the first lap was for the cold start emissions. An in-vehicle direct exhaust dual bag sampling technique was used to simultaneously collect exhaust samples upstream and downstream of the three-way catalyst (TWC). The cold start tests were conducted over a year, with ambient temperatures ranging from - 2°C to 32°C. The exhaust system was instrumented with thermocouples so that the catalyst light off temperature could be determined. The results showed that CO emissions for the cold start were reduced by a factor of 8 downstream of catalyst when ambient temperature rose from -2°C to 32°C, the corresponding hydrocarbon emissions were reduced by a factor of 4.
Technical Paper

The Influence Of Diesel Fuel Composition On Particulate PAH Emissions

1989-09-01
892079
The objective was to investigate PAH emissions in diesel particulates using two diesel fuels with different PAH content. Class A2 diesel from two different refinery sources were analysed for PAH and there were significant difference in the concentration of the 3 and 4 ring PAH of importance in particulate PAH emissions. One fuel had at least 20 times the benzo[a]pyrene (BaP) of the other. A mass balance between the fuel PAH input to the engine and the particulate PAH emissions was carried out. A similar mass balance was also carried out between the equivalent boiling point n-alkane fuel and particulate SOF, which determined how that distillation fraction of the fuel behaved in the engine. One of the fuels had a higher survivability of high MW n-alkanes and this was also reflected in the PAH emissions. The fuel with high BaP had BaP emissions entirely consistent with an unburned fuel source.
Technical Paper

The Influence of Fuel Pre-Heating on Combustion and Emissions with 100% Rapeseed Oil for a DI Diesel Engine

2009-04-20
2009-01-0486
This work investigates the heating of unprocessed rapeseed oil as a means to improve fuel delivery by reducing the fuel viscosity, and to assess the effects on combustion performance. The results show that a simple low power heater with thermal insulation around the fuel line and pump can effectively raise the operational fuel temperature at delivery to the pump. The results show that even with a moderate temperature increase, the fuel flow limitations with rapeseed oil are reduced and the legislated gaseous emissions are reduced at steady state conditions. As one of the main reasons for the conversion of straight oils to the methyl ester, ie biodiesel, is to reduce the viscosity, this work shows that heating the oil can have a similar effect. An emissions benefit is observed with biodiesel compared to rapeseed oil but this is not large. There is also a significant greenhouse gas and cost benefit associated with straight vegetable oils.
X