Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Journal Article

Summary of In-use NOx Emissions from Heavy-Duty Diesel Engines

2008-04-14
2008-01-1298
As part of the 1998 Consent Decrees concerning alternative ignition strategies between the six settling heavy-duty diesel engine manufacturers and the United States government, the engine manufacturers agreed to perform in-use emissions measurements of their engines. As part of the Consent Decrees, pre- (Phase III, pre-2000 engines) and post- (Phase IV, 2001 to 2003 engines) Consent Decree engines used in over-the-road vehicles were tested to examine the emissions of oxides of nitrogen (NOx) and carbon dioxide (CO2). A summary of the emissions of NOx and CO2 and fuel consumption from the Phase III and Phase IV engines are presented for 30 second “Not-to-Exceed” (NTE) window brake-specific values. There were approximately 700 Phase III tests and 850 Phase IV tests evaluated in this study, incorporating over 170 different heavy duty diesel engines spanning 1994 to 2003 model years. Test vehicles were operated over city, suburban, and highway routes.
Technical Paper

Respirable Particulate Genotoxicant Distribution in Diesel Exhaust and Mine Atmospheres

1992-09-01
921752
Results of a research effort directed towards identifying and measuring the genotoxic properties of respirable particulate matter involved in mining exposures, especially those which may synergistically affect genotoxic hazard, are presented. Particulate matter emissions from a direct injection diesel engine have been sampled and assayed to determine the genotoxic potential as a function of engine operating conditions. Diesel exhaust from a Caterpillar 3304 diesel engine, representative of the ones found in underground mines, rated 100 hp at 2200 rpm is diluted in a multi-tube mini-dilution tunnel and the particulate matter is collected on 70 mm fluorocarbon coated glass fiber filters as well as on 8″ x 10″ hi-volume filters. A six mode steady state duty cycle was used to relate engine operating conditions to the genotoxic potential.
Technical Paper

Particle Number Emissions: An Analysis by Varying Engine/Exhaust-System Design and Operating Parameters

2011-09-11
2011-24-0170
An increasing concern has been growing in the last years toward health effects due to Particulate Matter (PM) emissions. This triggered the widespread diffusion of Diesel Particulate Filters (DPFs), which equip almost every Diesel car and truck on the market, allowing to get large reduction (in the order of 95% and more) in terms of PM mass. However, PM health effects are believed to be more related to particle number rather than to particle mass. This gave rise in Europe to new regulations for passenger cars on total particle number, that will be introduced from EURO6 on. Engine/Exhaust-System assembly is therefore under investigation, to better understand the effectiveness of aftertreatment components toward particle number reduction, especially by varying engine and exhaust-system design/operating conditions, and to compare particle number emissions to particle mass emissions.
Technical Paper

Partially Stratified Charge Natural Gas Combustion: The Impact of Uncertainties on LES Modeling

2015-09-06
2015-24-2409
The aim of this work is to carry out statistical analyses on simulated results obtained from large eddy simulations (LES) to characterize spark-ignited combustion process in a partially premixed natural gas mixture in a constant volume combustion chamber (CVCC). Inhomogeneity in fuel concentration was introduced through a fuel jet comprising up to 0.6 per cent of the total fuel mass, in the vicinity of the spark ignition gap. The numerical data were validated against experimental measurements, in particular, in terms of jet penetration and spread, flame front propagation and overall pressure trace. Perturbations in key flow parameters, namely inlet velocity, initial velocity field, and turbulent kinetic energy, were also introduced to evaluate their influence on the combustion event. A total of 12 simulations were conducted.
Technical Paper

Partially Stratified Charge Natural Gas Combustion: A LES Numerical Analysis

2015-04-14
2015-01-0398
The aim of this work is to assess the accuracy of results obtained from Large Eddy Simulations (LES) of a partially-premixed natural gas spark-ignition combustion process in a Constant Volume Combustion Chamber (CVCC). To this aim, the results are compared with the experimental data gathered at the University of British Columbia. The computed results show good agreement with both flame front visualization and pressure rise curves, allowing for drawing important statements about the peculiarities of the Partially Stratified Combustion ignition concept and its benefits in ultra-lean combustion processes.
Technical Paper

Parametric Study of 2007 Standard Heavy-Duty Diesel Engine Particulate Matter Sampling System

2007-01-23
2007-01-0060
Heavy-Duty Diesel (HDD) engines' particulate matter (PM) emissions are most often measured quantitatively by weighing filters that collect diluted exhaust samples pre- and post-test. PM sampling systems that dilute exhaust gas and collect PM samples have different effects on measured PM data. Those effects usually contribute to inter-laboratory variance. The U.S. Environmental Protection Agency (EPA)'s 2007 PM emission measurement regulations for the test of HDD engines should reduce variability, but must also cope with PM mass that is an order of magnitude lower than legacy engine testing. To support the design of a 2007 US standard HDD PM emission sampling system, a parametric study based on a systematic Simulink® model was performed. This model acted as an auxiliary design tool when setting up a new 2007 HDD PM emission sampling system in a heavy-duty test cell at West Virginia University (WVU). It was also designed to provide assistance in post-test data processing.
Technical Paper

PM Concentration and Size Distributions from a Heavy-duty Diesel Engine Programmed with Different Engine-out Calibrations to Meet the 2010 Emission Limits

2009-04-20
2009-01-1183
The temporary deactivation of the selective catalytic reduction (SCR) device due to malfunction requires the engine control to engage multiple engine-out calibrations. Further, it is expected that emitted particles will be different in composition, size and morphology when an engine, which meets the 2010 particulate matter (PM) gravimetric limits, is programmed with multiple maps. This study investigated the correlation between SCR-out/engine-out PM emissions from an 11-liter Volvo engine. Measurement of PM concentrations and size distributions were conducted under steady state and transient cycles. Ion Chromatograph analysis on gravimetric filters at the SCR-out has revealed the presence of sulfates. Two different PM size-distributions were generated over a single engine test mode in the accumulation mode region with the aid of a design of experiment (DOE) tool. The SCR-out PM size distributions were found to correlate with the two engine-out distributions.
Technical Paper

On-Road Use of Fischer-Tropsch Diesel Blends

1999-04-27
1999-01-2251
Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California #2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NOx) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state #2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without.
Technical Paper

Numerical Simulation of Engines Fuelled by Hydrogen and Natural Gas Mixtures

2007-07-23
2007-01-1901
The use of hydrogen (H2) as a fuel for urban private and public transport may represent a major solution to reduce pollutant emissions and CO2 production in urban areas. Looking for short-term solutions, the introduction of moderate quantities of H2 (up to 30%) into Natural Gas (NG) SI engines may be a feasible solution to get a faster combustion process, and therefore less HC and CO2 emissions, and a slight NOx increase which may be potentially limited by the adoption of lean-burn engine control strategies. However, concurrent effects of volumetric efficiency reduction and maximum temperature in the combustion chamber require a careful optimization of operating conditions to fully exploit the H2 potential and to determine the most convenient H2/NG mixture ratio. In that context, 3D numerical tools may be useful to analyze the effect of H2 introduction on engine performance.
Technical Paper

Number Concentration and Size Distributions of Nanoparticle Emissions during Low Temperature Combustion using Fuels for Advanced Combustion Engines (FACE)

2014-04-01
2014-01-1588
Due to tightening emission legislations, both within the US and Europe, including concerns regarding greenhouse gases, next-generation combustion strategies for internal combustion diesel engines that simultaneously reduce exhaust emissions while improving thermal efficiency have drawn increasing attention during recent years. In-cylinder combustion temperature plays a critical role in the formation of pollutants as well as in thermal efficiency of the propulsion system. One way to minimize both soot and NOx emissions is to limit the in-cylinder temperature during the combustion process by means of high levels of dilution via exhaust gas recirculation (EGR) combined with flexible fuel injection strategies. However, fuel chemistry plays a significant role in the ignition delay; hence, influencing the overall combustion characteristics and the resulting emissions.
Technical Paper

Natural Gas and Diesel Transit Bus Emissions: Review and Recent Data

1997-11-17
973203
Natural Gas engines are viewed as an alternative to diesel power in the quest to reduce heavy duty vehicle emissions in polluted urban areas. In particular, it is acknowledged that natural gas has the potential to reduce the inventory of particulate matter, and this has encouraged the use of natural gas engines in transit bus applications. Extensive data on natural gas and diesel bus emissions have been gathered using two Transportable Heavy Duty Vehicle Emissions Testing Laboratories, that employ chassis dynamometers to simulate bus inertia and road load. Most of the natural gas buses tested prior to 1997 were powered by Cummins L-10 engines, which were lean-burn and employed a mechanical mixer for fuel introduction. The Central Business District (CBD) cycle was used as the test schedule.
Technical Paper

Natural Gas Partially Stratified Charge Combustion: Extended Analysis of Experimental Validation and Study of Turbulence Impact on Flame Propagation

2016-04-05
2016-01-0596
A Large Eddy Simulation (LES) numerical study of the Partially Stratified Charge (PSC) combustion process is here proposed, carried out with the open Source code OpenFOAM, in a Constant Volume Combustion Chamber (CVCC). The solver has already been validated in previous papers versus experimental data under a limited range of operating conditions. The operating conditions domain for the model validation is extended in this paper, mostly by varying equivalence ratio, to better highlight the influence of turbulence on flame front propagation. Effects of grid sizing are also shown, to better emphasize the trade-off between the level of accuracy of turbulent vortex description, and their impact on the kinematics of flame propagation. Results show the validity of the approach that is evident by comparing numerical and experimental data.
Technical Paper

Natural Gas Fueled Engines Modeling under Partial Stratified Charge Operating Conditions

2017-09-04
2017-24-0093
Using natural gas in internal combustion engines (ICEs) is emerging as a promising strategy to improve thermal efficiency and reduce exhaust emissions. One of the main benefits related to the use of this fuel is that the engine can be run with lean mixtures without compromising its performances. However, as the mixture is leaned out beyond the Lean Misfire Limit (LML), several technical problems are more likely to occur. The flame propagation speed gradually decreases, leading to a slower heat release and a low combustion quality, thus increasing the occurrence of misfiring and incomplete combustions. This in turn results in a sharp increment in CO and UHC emissions, as well as in cycle-to-cycle variability. In order to limit the above-mentioned problems, different solutions have been proposed over the last decade.
Technical Paper

Mutagenic Potential of Particulate Matter from Diesel Engine Operation on Fischer-Tropsch Fuel as a Function of Engine Operating Conditions and Particle Size

2002-05-06
2002-01-1699
Further growth of diesel engines in the light-duty and heavy-duty vehicular market is closely linked to the potential health risks of diesel exhaust. The California Air Resources Board and the Office of Environmental Health Hazard Assessment have identified diesel exhaust as a toxic air contaminant. The International Agency for Research on Cancer concluded that diesel particulate is a probable human carcinogen [1]. Cleaner burning liquid fuels, such as those derived from natural gas via the Fischer-Tropsch (FT) process, offer a potentially economically viable alternative to standard diesel fuel while providing reduced particulate emissions. Further understanding of FT operation may be realized by investigating the differences in toxicity and potential health effects between particulate matter(PM) derived from FT fuel and that derived from standard Federal diesel No. 2 (DF).
Technical Paper

Multidimensional Correlation Study Using Linear Regression of PM and NOX for Heavy Duty Diesel Vehicles

2005-04-11
2005-01-1618
When heavy-duty truck emissions rates are expressed in distance-specific units (such as g/mile), average speed and the degree of transient behavior of the vehicle activity can affect the emissions rate. Previous one-dimensional studies have shown some correlation of distance-specific emissions rates between cycles. This paper reviews emissions data sets from the 5-mode CARB Heavy Heavy-Duty Diesel Truck (HHDDT) Schedule, the Heavy Duty Urban Dynamometer Driving Schedule (UDDS) and an inspection and maintenance cycle, known as the AC5080. A heavy-duty chassis dynamometer was used for emissions characterization along with a full-scale dilution tunnel. The vehicle test weights were simulated at 56,000 lbs. Two-dimensional correlations were used to predict the emissions rate on one mode or cycle from the rates of two other modes or cycles.
Technical Paper

Model Based Design Procedure of After Treatment Systems for Non-Road Diesel Engines

2011-09-11
2011-24-0186
In 2011-2013, regulations will be tightened for non-road vehicles, via the application of Stage III-B standards in Europe. With state-of-the-art technology (high pressure common rail, cooled EGR), non-road diesel engines will require DPFs to control PM, as 90% reduction is requested with respect to STAGE III-A standards. Additional challenges may also foresee the obtainment of STAGE III-B standards with STAGE III-A engine technology, by means of retrofit systems for PM control. In that case, retrofit systems must furthermore guarantee simple control systems, and must be robust especially in terms of limited back pressure increase during normal operation. Moreover, retrofit systems must offer flexibility from the design point of view, in order to be correctly operated with several engines of same class, possibly characterized by totally different PM flow rates, temperature, NOx and O₂ availability.
Technical Paper

Measurement of In-Use, On-Board Emissions from Heavy-Duty Diesel Vehicles:Mobile Emissions Measurement System

2001-09-24
2001-01-3643
Emissions tests for heavy-duty diesel-fueled vehicles are normally performed using an engine dynamometer or a chassis dynamometer. Both of these methods generally entail the use of laboratory-grade emissions measurement instrumentation, a CVS system, an environment control system, a dynamometer, and associated data acquisition and control systems. The results obtained from such tests provide a means by which engines may be compared to the emissions standards, but may not be truly indicative of an engine's in-vehicle performance while operating on the road. An alternative to such a testing methodology would be to actively record the emissions from a vehicle while it was operating on-road. A considerable amount of discussion has been focused on the development of on-road emissions measurement systems (OREMS) that would provide for such in-use emissions data collection.
Technical Paper

Laser Spark Plug Development

2007-04-16
2007-01-1600
To meet the ignition system needs of large bore high pressure lean burn natural gas engines a laser diode side pumped passively Q-switched laser igniter was designed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn high brake mean effective pressure (BMEP) engine. The experimentation explored a variety of optical and electrical input parameters that when combined produced a robust spark in air. The results show peak power levels exceeding 2 MW and peak focal intensities above 400 GW/cm2. Future research avenues and current progress with the initial prototype are presented and discussed.
Technical Paper

Influences of Real-World Conditions on In-Use Emission from Heavy-Duty Diesel Engines

2006-10-16
2006-01-3393
The 1998 Consent Decrees between the settling heavy-duty diesel engine manufacturers and the United States Government require the engine manufacturer to perform in-use emissions testing to evaluate their engine designs and emissions when the vehicle is placed into service. This additional requirement will oblige the manufacturer to account for real-world conditions when designing engines and engine control algorithms and include driving conditions, ambient conditions, and fuel properties in addition to the engine certification test procedures. Engine operation and ambient conditions can be designed into the engine control algorithm. However, there will most likely be no on-board determination of fuel properties or composition in the near future. Therefore, the engine manufacturer will need to account for varying fuel properties when developing the engine control algorithm for when in-use testing is performed.
X