Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

ℒ1 Adaptive Flutter Suppression Control Strategy for Highly Flexible Structure

2013-09-17
2013-01-2263
The aim of this work is to apply an innovative adaptive ℒ1 techniques to control flutter phenomena affecting highly flexible wings and to evaluate the efficiency of this control algorithm and architecture by performing the following tasks: i) adaptation and analysis of an existing simplified nonlinear plunging/pitching 2D aeroelastic model accounting for structural nonlinearities and a quasi-steady aerodynamics capable of describing flutter and post-flutter limit cycle oscillations, ii) implement the ℒ1 adaptive control on the developed aeroelastic system to perform initial control testing and evaluate the sensitivity to system parameters, and iii) perform model validation and calibration by comparing the performance of the proposed control strategy with an adaptive back-stepping algorithm. The effectiveness and robustness of the ℒ1 adaptive control in flutter and post-flutter suppression is demonstrated.
Technical Paper

“Web-ACSYNT”: Conceptual-Level Aircraft Systems Analysis on the Internet

1997-10-01
975509
A Web-based version of the aircraft design program ACSYNT has been created. “Web-ACSYNT” provides the user with a familiar user interface and is accessible from multiple platforms. Analyses are based upon a set of baseline aircraft models which can be modified through a carefully selected set of parameters related to weight, aerodynamics, propulsion, economics, and mission. The software is intended to become one of the models that comprise the Aviation System Analysis Capability (ASAC) currently being developed by NASA under the Advanced Subsonic Technology (AST) program.
Technical Paper

“The Impact Of The Microprocessor On Aircraft Electric System Control Philosophy”

1981-10-01
811085
The use of microprocessors for the implementation of control functions in aircraft electric systems has become a reality. This paper presents a brief survey of these systems along with a typical system block diagram. A description of the diagram highlights the advantages of microprocessor systems over existing noncomputerized control schemes. The second half of the paper discusses the adaptability of more advanced microprocessor systems in the next generation of aircraft electric systems. These powerful new computers will allow digital control and protection of single unit and paralleled generating and starting systems, as well as providing even more effective built-in-test.
Technical Paper

“Smart Panel” Electronic Circuit Breaker Control Technology

2008-11-11
2008-01-2880
This paper will discuss using Astronics “Smart Panel” illuminated control panels to control an electronic power distribution system. A discussion of wiring simplification, automatic control possibilities and real time load monitoring is presented. The challenges of retrofitting the system into older aircraft will be covered as well. The paper also explains Electronic Circuit Breaker technology, arc fault protection, panel lighting technologies, control bus options, displays, and human input technology (buttons and knobs).
Technical Paper

“RoHS” Compliant Chrome - Free Conversion Coating for Aerospace Manufacturing

2006-09-12
2006-01-3130
This paper presents, chemistry, test data and processing procedures on a non toxic and environmentally friendly chrome-free conversion coating alternative with the same level of adhesion and secondary corrosion resistance as that found in chrome containing conversion coating systems. Test data from military and independent sources will be presented on secondary coating adhesion, electrical conductivity, filiform and neutral salt-spray corrosion resistance as compared to chromate based systems .on magnesium, aluminum and zinc and their respective alloys. The European “RoSH” initiative will not allow for the presence of any hexavalent chromium on imported electrical components as of July first of 2006. Trivalent chromium based systems generate hexavalent chromium due to the oxidation of the trivalent chromium and as such will not be allowed.
Technical Paper

“Electric Aircraft” Pioneer The Focke-Wulf Fw 190

1996-10-01
965631
The Focke-Wulf Fw 190 was one of the truly outstanding fighter aircraft of the Second World War. It distinguished itself over all fronts on which the Luftwaffe fought in conditions ranging from arctic wastes to the deserts of North Africa. The Fw 190 represented the epitome of conventional piston-engine fighter design on the threshold of the jet age. Conceived nearly sixty years ago, flying for the first time on the eve of the war in 1939 and acknowledged as “the best all-around fighter in the world” in the mid-war years, derivatives of the Fw 190 were still pushing the ultimate capability boundary for this class of aircraft at war's end in 1945 (reaching maximum level true airspeeds of 470 mph [about Mach 0.7] at altitudes of well over 40,000 feet). This paper assesses the design attributes and technology approaches, including innovative use of advanced electrical systems, that were used to make the Fw 190 one of the great all-around fighters in aviation history.
Technical Paper

“Condensation – Why it Needs to be Addressed in Every Aircraft”

2003-09-08
2003-01-3000
A wide body aircraft carries almost a half–ton of water and ice between the cabin and skin of the aircraft. The water can get on wires and connectors, which can cause electrical problems, cause corrosion and rust, and, eventually, “rain in the plane”. The speaker is the CEO of CTT Systems that has developed a system that solves the condensation by using dry air. The speaker will discuss how condensation can be prevented and how airlines can also save maintenance costs in the process. This topic is relevant for the attendees at the Aerospace Expo, as they are decision makers who need to be aware of this issue. It is also important for the MRO shows as the attendees are on the front lines of dealing with this problem.
Technical Paper

“A Dry Aircraft is a Safer Aircraft – Beating Condensation by Using Dry Air”

2003-09-08
2003-01-3017
The airline industry seems to be providing more leisure features on planes like inflight entertainment, Internet access and Digital TV, but it seems the airline industry has ignored the issue of excess condensation on aircraft, which had plagued carriers since the birth of the airline industry. How safe are passengers when a wide body aircraft carries in excess almost a half ton of water and ice between the cabin and skin of the aircraft? Besides the added weight straining the aircraft, excess condensation soaks wires and connectors which can cause electrical shorts. There have been instances of emergency doors frozen shut, locked by ice stemming from excess water dripping inside the plane. Extra water also causes “rain-in-the-plane”, an issue that has gained national attention and causes passenger discomfort. It's time for the industry to address what has become a serious issue.
Technical Paper

some development problems with Large Cryogenic Propellant Systems

1960-01-01
600022
HEAT TRANSFER causes loading and starting design problems in large missile systems powered by cryogenic propellants. This manifests itself during loading as effective density variation, violent surface conditions, boiloff, and ice formation — problems which may be solved by insulating the tank. During starting it causes overheating and caviation — effects which may be reduced by recirculators and subcooled charge injections. The study described in this paper centers around liquid oxygen and its variations in heat flux rate, which affect liquid density, surface condition, and replenishing requirements. The problem areas are made apparent by consideration of a hypothetical missile system.*
Technical Paper

properties of Asbestos Reinforced Laminates at elevated temperatures

1960-01-01
600063
IF ROCKET OR MISSILE designers were asked to choose one specific property of engineering materials they would like to have improved, the largest percentage would undoubtedly select strength at high temperature. In addition to retaining strength at high temperatures, missile materials must be resistant to erosion and ablation. Missile structures must also be satisfactory when subjected to aerodynamic and acceleration loads, high stresses of vibration, and thermal shock. The need for low-density, easily fabricated, heat-resistant materials has resulted in a continuing search for more effective combinations of known materials, as well as the development of new materials. This paper discusses some interesting results obtained in studies of composite materials that might be used for rocket or missile construction.
Technical Paper

preliminary design considerations for the Structure of a Trisonic Transport

1960-01-01
600045
STRUCTURAL MATERIALS for Mach 3 jet transports pose difficult problems for the design engineer. Reasons for this problem are the incomplete information available on the many possible metals and the diversity of critical properties that are added by supersonic requirements. The material properties discussed in this paper include tensile strength, resistance to crack propagation, ease of fabrication, weldability, and thermal expansion. Cost factors are also considered. The structural configuration of the wing and fuselage is an example of the complexity of the material selection problem. The wing may be rigidity-critical, and the fuselage strength-critical; each requires diferent material properties to solve the problem.*
Technical Paper

prediction in new Metal Joining Processes

1960-01-01
600020
NEW WELDING processes are dropping costs while providing improvements in weld quality. This paper describes some of the more promising new developments in pressure and fusion welding and brazing. Included in the discussion are ultrasonic, high frequency resistance, foil seam, magnetic force, percussion, friction, and thermopressure welding and diffusion bonding. The description of adhesive bonding includes the development of glass or ceramic materials as structural adhesives.*
Article

magniX and AeroTEC to fly all-electric eCaravan May 28

2020-05-21
Mobility is in the midst of an electric revolution, propelled by industry innovators such as magniX. Headquartered in Redmond, Washington, the magniX team is focused on revolutionizing electric motors for commercial aviation applications.
Technical Paper

design problems of VERY HIGH SPEED FLIGHT

1959-01-01
590069
THIS PAPER is concerned with design problems which are encountered on manned aircraft operating at very high speeds. Very high speeds are considered to be from Mach 2 or 1300 mph to speeds of the order of Mach 38 or 25,000 mph, which is the velocity for escape from the earth. Mach 2 is considered a logical starting point since it represents the approximate upper limit of present day military aircraft. Manned aircraft will continue to be developed for flight at very high speed and high altitudes and the experiences gained will serve as stepping stones to eventual manned satellites and space vehicles. The major problems to be solved relate to aerodynamic heating, stability and control, and human effects. This paper received the 1958 Wright Brothers Medal.
Technical Paper

a study of Self-Contained Starting Systems for Turbojet and Turboprop Engines

1960-01-01
600011
SUBSTANTIAL POWER is necessary to start the modern jet engine. Thus, starting equipment has become a major concern of air transport operators. This paper discusses the equipment used with self-contained starting systems. The authors discuss and evaluate a variety of self-contained systems: combustor, fuel-air combustion, cartridge, liquid propellant, hydraulic supported by auxiliary power units, and electric supported by APU. Possible future systems are: self-breathing systems, oxygen combustors, and liquid-oxygen-water-fuel combustors. It is emphasized that the choice of a starting system for a particular aircraft will depend on aircraft characteristics and the aircraft's intended use.*
Technical Paper

Zn-Ni Plating as a Cadmium Alternative

2007-09-17
2007-01-3837
In a 2-year program sponsored by SJAC, an aqueous electroplating process using alkaline Zn-Ni with trivalent chromium post treatment is under evaluation for high strength steel for aircraft application as an alternative to cadmium. Commercial Zn-15%Ni rack/barrel plating solutions are basis for plating aircraft parts or fasteners. Brightener was reduced from the original formula to form porous plating that enables bake-out of hydrogen to avoid hydrogen embrittlement condition. Properties of the deposit, such as appearance, adhesion, un-scribed corrosion resistance, and galvanic corrosion resistance in contact with Al alloy, were evaluated. Coefficient of friction was compared with Cd plating by torque-tension measurements. Evaluation of the plating for scribed corrosion resistance, primer adhesion, etc. will continue in FY2007.
Technical Paper

Zero-Waste PVD Cadmium for High Strength Steels

1998-11-11
983137
In spite of environmental issues related to cadmium and its electroplating process, electroplated cadmium is still extensively used in the aerospace and defense sectors. This trend is likely to continue especially for high strength steels because cadmium provides the best known corrosion and embrittlement protection for this application. Consequently, the environmental concerns related to the cadmium electroplating have been addressed using an alternative Zero-waste Physical Vapor Deposition (Z-PVD). This method does not use liquids, it recycles cadmium in situ, and is free of hydrogen embrittlement. The Z-PVD process is now in commercial production for the aerospace fasteners. The quality of the coatings has been at least equal to that of the electroplated cadmium.
Technical Paper

Zero Carbon Emission Aviation Fuel Technology Review - The Hydrogen Pathway

2024-01-08
2023-36-0029
The commercial aviation currently accounts for roughly 2.5 % of the global CO2 emissions and around 3.5% of world warming emissions, taking into account non CO2 effects on the climate. Its has grown faster in recent decades than the other transport modes (road, rail or shipping), with an average rate of 2.3%/year from 1990 to 2019, prior to the pandemic. Moreover, its share of Greenhouse (GHG) emissions is supposed to grow, with the increasing demand scenario of air trips worldwide. This scenario might threaten the decarbonization targets assumed by the aviation industry, in line with the world efforts to minimize the climate effects caused by the carbon emissions. In this context, hydrogen is set as a promising alternative to the traditional jet fuel, due to its zero carbon emissions.
Technical Paper

ZERO-ODP REFRIGERANTS FOR LOW TONNAGE CENTRIFUGAL CHILLER SYSTEMS

1996-05-01
961320
This paper investigates the use of several zero-ozone depleting potential (zero-ODP) HFC refrigerants, including HFC-134a, HFC-227ca, HFC-227ea, HFC-236ea, HFC-236cb, HFC-236fa, HFC-245cb, and HFC-254cb, for centrifugal chiller applications. We took into account the thermodynamic properties of the refrigerant and aerodynamic characteristics of the impeller compression process in this evaluation.. For a given operating temperature lift, there are significant differences in the pressure ratio required by each refrigerant and this variation in pressure ratio directly affects compressor size, efficiency, and performance. A comparison of the HFC refrigerant candidates with CFC-114 shows that HFC-236ea, HFC-227ca and HFC-227ea are viable alternatives for centrifugal water chillers. HFC-236ea has properties closest to CFC-114, and will result in comparible performance, but will require a slightly larger impeller and a purge system.
Technical Paper

Yaw Effects on the Narrowband Spectra Above a Delta Wing in Turbulent Flow

2016-09-20
2016-01-2056
Combat aircraft maneuvering at high angles of attack or in landing approach are likely to encounter conditions where the flow over the swept wings is yawed. This paper examines the effect of yaw on the spectra of turbulence above and aft of the wing, in the region where fins and control surfaces are located. Prior work has shown the occurrence of narrowband velocity fluctuations in this region for most combat aircraft models, including those with twin fins. Fin vibration and damage has been traced to excitation by such narrowband fluctuations. The narrowband fluctuations themselves have been traced to the wing surface. The issue in this paper is the effect of yaw on these fluctuations, as well as on the aerodynamic loads on a wing, without including the perturbations due to the airframe.
X