Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 12119
Standard

在 9100 质量管理体系内 应用 AQAP 2110 的指南

2024-02-16
CURRENT
IA9137_ZHCN
编制和发布本文件旨在供应商遵守 9100 规定的情况下,就 AQAP-2110 的应用提供相关信息和指南。本文件的发布号为 AQAP-2110-SRD.2 和 IA9137。本文件由 NATO 和行业代表联合编制,供 NATO 和行业内使用,旨在促进 AQAP-2110 和 9100 的使用及对其之间关系的理解。当采购国使用对外军售 (FMS) 作为其采购方式时,可能需要 AQAP。 本文件旨在促进采购方及其 9100 供应商对 AQAP-2110 要求解释的通用性。 本文件内容不具有法律或合同地位,亦不会取代、增加或取消 AQAP-2110 或 9100 的任何要求。 由于可能存在多种条件(取决于工作或过程类型、所用设备和所涉人员的技能等因素),不应将本指南视为包含所有事宜,亦不应将本指南视为强加满足合同要求的具体手段或方法。相关方应意识到,可使用其他手段或方法来满足这些要求。 本指南使用者应谨记,当合同引用了 AQAP 2110,其要求对于供应商和次级供应商具有强制性。
Technical Paper

“The Impact Of The Microprocessor On Aircraft Electric System Control Philosophy”

1981-10-01
811085
The use of microprocessors for the implementation of control functions in aircraft electric systems has become a reality. This paper presents a brief survey of these systems along with a typical system block diagram. A description of the diagram highlights the advantages of microprocessor systems over existing noncomputerized control schemes. The second half of the paper discusses the adaptability of more advanced microprocessor systems in the next generation of aircraft electric systems. These powerful new computers will allow digital control and protection of single unit and paralleled generating and starting systems, as well as providing even more effective built-in-test.
Technical Paper

“Smart Panel” Electronic Circuit Breaker Control Technology

2008-11-11
2008-01-2880
This paper will discuss using Astronics “Smart Panel” illuminated control panels to control an electronic power distribution system. A discussion of wiring simplification, automatic control possibilities and real time load monitoring is presented. The challenges of retrofitting the system into older aircraft will be covered as well. The paper also explains Electronic Circuit Breaker technology, arc fault protection, panel lighting technologies, control bus options, displays, and human input technology (buttons and knobs).
Technical Paper

“Insert and Fly” Using PCMCIA PC Cards in the Avionics Market

1994-11-01
942553
When looking into using PCMCIA PC Cards in the avionics market, three areas must be researched. The first is what are the applications and benefits of using the PC Cards while in flight, followed by the applications and benefits on the ground, and thirdly on how to make a PC Card that would stand up to the rugged avionics environment. PCMCIA PC Cards can be used in all aspects of flight. Three possible applications on the ground are; paperless documentation, modifications, flightline changes. Once airborne, PC Cards can be removed and a different functionality card can be inserted. One PC card socket can be used for many different functions during one flight. Some of the possible applications for PC Cards inflight are; flight plan changes, backup Line Replaceable Units (LRUs), and solid state data collection.
Technical Paper

“Electric Aircraft” Pioneer The Focke-Wulf Fw 190

1996-10-01
965631
The Focke-Wulf Fw 190 was one of the truly outstanding fighter aircraft of the Second World War. It distinguished itself over all fronts on which the Luftwaffe fought in conditions ranging from arctic wastes to the deserts of North Africa. The Fw 190 represented the epitome of conventional piston-engine fighter design on the threshold of the jet age. Conceived nearly sixty years ago, flying for the first time on the eve of the war in 1939 and acknowledged as “the best all-around fighter in the world” in the mid-war years, derivatives of the Fw 190 were still pushing the ultimate capability boundary for this class of aircraft at war's end in 1945 (reaching maximum level true airspeeds of 470 mph [about Mach 0.7] at altitudes of well over 40,000 feet). This paper assesses the design attributes and technology approaches, including innovative use of advanced electrical systems, that were used to make the Fw 190 one of the great all-around fighters in aviation history.
Technical Paper

“Condensation – Why it Needs to be Addressed in Every Aircraft”

2003-09-08
2003-01-3000
A wide body aircraft carries almost a half–ton of water and ice between the cabin and skin of the aircraft. The water can get on wires and connectors, which can cause electrical problems, cause corrosion and rust, and, eventually, “rain in the plane”. The speaker is the CEO of CTT Systems that has developed a system that solves the condensation by using dry air. The speaker will discuss how condensation can be prevented and how airlines can also save maintenance costs in the process. This topic is relevant for the attendees at the Aerospace Expo, as they are decision makers who need to be aware of this issue. It is also important for the MRO shows as the attendees are on the front lines of dealing with this problem.
Technical Paper

“A Dry Aircraft is a Safer Aircraft – Beating Condensation by Using Dry Air”

2003-09-08
2003-01-3017
The airline industry seems to be providing more leisure features on planes like inflight entertainment, Internet access and Digital TV, but it seems the airline industry has ignored the issue of excess condensation on aircraft, which had plagued carriers since the birth of the airline industry. How safe are passengers when a wide body aircraft carries in excess almost a half ton of water and ice between the cabin and skin of the aircraft? Besides the added weight straining the aircraft, excess condensation soaks wires and connectors which can cause electrical shorts. There have been instances of emergency doors frozen shut, locked by ice stemming from excess water dripping inside the plane. Extra water also causes “rain-in-the-plane”, an issue that has gained national attention and causes passenger discomfort. It's time for the industry to address what has become a serious issue.
Technical Paper

some development problems with Large Cryogenic Propellant Systems

1960-01-01
600022
HEAT TRANSFER causes loading and starting design problems in large missile systems powered by cryogenic propellants. This manifests itself during loading as effective density variation, violent surface conditions, boiloff, and ice formation — problems which may be solved by insulating the tank. During starting it causes overheating and caviation — effects which may be reduced by recirculators and subcooled charge injections. The study described in this paper centers around liquid oxygen and its variations in heat flux rate, which affect liquid density, surface condition, and replenishing requirements. The problem areas are made apparent by consideration of a hypothetical missile system.*
Article

magniX and AeroTEC to fly all-electric eCaravan May 28

2020-05-21
Mobility is in the midst of an electric revolution, propelled by industry innovators such as magniX. Headquartered in Redmond, Washington, the magniX team is focused on revolutionizing electric motors for commercial aviation applications.
Technical Paper

a study of Self-Contained Starting Systems for Turbojet and Turboprop Engines

1960-01-01
600011
SUBSTANTIAL POWER is necessary to start the modern jet engine. Thus, starting equipment has become a major concern of air transport operators. This paper discusses the equipment used with self-contained starting systems. The authors discuss and evaluate a variety of self-contained systems: combustor, fuel-air combustion, cartridge, liquid propellant, hydraulic supported by auxiliary power units, and electric supported by APU. Possible future systems are: self-breathing systems, oxygen combustors, and liquid-oxygen-water-fuel combustors. It is emphasized that the choice of a starting system for a particular aircraft will depend on aircraft characteristics and the aircraft's intended use.*
Technical Paper

Zn-Ni Plating as a Cadmium Alternative

2007-09-17
2007-01-3837
In a 2-year program sponsored by SJAC, an aqueous electroplating process using alkaline Zn-Ni with trivalent chromium post treatment is under evaluation for high strength steel for aircraft application as an alternative to cadmium. Commercial Zn-15%Ni rack/barrel plating solutions are basis for plating aircraft parts or fasteners. Brightener was reduced from the original formula to form porous plating that enables bake-out of hydrogen to avoid hydrogen embrittlement condition. Properties of the deposit, such as appearance, adhesion, un-scribed corrosion resistance, and galvanic corrosion resistance in contact with Al alloy, were evaluated. Coefficient of friction was compared with Cd plating by torque-tension measurements. Evaluation of the plating for scribed corrosion resistance, primer adhesion, etc. will continue in FY2007.
Technical Paper

Zero-Waste PVD Cadmium for High Strength Steels

1998-11-11
983137
In spite of environmental issues related to cadmium and its electroplating process, electroplated cadmium is still extensively used in the aerospace and defense sectors. This trend is likely to continue especially for high strength steels because cadmium provides the best known corrosion and embrittlement protection for this application. Consequently, the environmental concerns related to the cadmium electroplating have been addressed using an alternative Zero-waste Physical Vapor Deposition (Z-PVD). This method does not use liquids, it recycles cadmium in situ, and is free of hydrogen embrittlement. The Z-PVD process is now in commercial production for the aerospace fasteners. The quality of the coatings has been at least equal to that of the electroplated cadmium.
Technical Paper

Zero G Liquid Propellant Orientation by Passive Control

1964-01-01
640239
This paper discusses the advantages and problems associated with the use of “passive” liquid containment systems that utilize liquid intermolecular forces for propellant orientation in reduced or zero gravity environments. Liquid orientation is required to provide reliable engine restart and tank venting operations of space vehicle propulsion systems. Various liquid containment system concepts, and associated design criteria, are presented and general problem areas of interface stability, liquid slosh, and effects of thermal energy are described. Descriptions of present and planned test facilities designed to provide reduced gravity environments and extended time durations are included. It is concluded that additional design criteria in the problem areas discussed must be obtained before “passive” liquid containment systems can replace systems now used in reduced or zero gravity environments.
Technical Paper

Zero Carbon Emission Aviation Fuel Technology Review - The Hydrogen Pathway

2024-01-08
2023-36-0029
The commercial aviation currently accounts for roughly 2.5 % of the global CO2 emissions and around 3.5% of world warming emissions, taking into account non CO2 effects on the climate. Its has grown faster in recent decades than the other transport modes (road, rail or shipping), with an average rate of 2.3%/year from 1990 to 2019, prior to the pandemic. Moreover, its share of Greenhouse (GHG) emissions is supposed to grow, with the increasing demand scenario of air trips worldwide. This scenario might threaten the decarbonization targets assumed by the aviation industry, in line with the world efforts to minimize the climate effects caused by the carbon emissions. In this context, hydrogen is set as a promising alternative to the traditional jet fuel, due to its zero carbon emissions.
Standard

ZINC PLATING

1991-10-01
HISTORICAL
AMS2402F
This specification covers the engineering requirements for electrodepositton of zinc and the properties of the deposit.
X