Refine Your Search

Topic

Author

Search Results

Technical Paper

Vaporization and Turbulence Characteristics of High Pressure Gasoline Sprays Impinging on a Wall

2019-12-19
2019-01-2247
To get a better understanding of the characteristics of the high pressure gasoline sprays impinging on a wall, a fundamental study was conducted in a high-temperature high-pressure constant volume vessel under the simulated engine conditions of in-cylinder pressures, temperatures, and wall temperatures. The injection pressure was varied from 20 to 120 MPa. The spray tip penetration, vapor mass distribution, and vaporization rate were quantitatively measured with the laser absorption-scattering (LAS) technique. The velocity fields of the wall-impinging sprays under vaporizing conditions were measured with the particle image velocimetry (PIV) technique using silicone oil droplets as tracers. The effects of injection pressure and spray/wall interactions on spray characteristics were investigated. The results showed that the increased injection pressure improved penetration, vaporization, and turbulence of the sprays.
Technical Paper

Thixomolding® of Magnesium Automotive Components

1998-02-23
980087
Thixomolding® produces net-shape parts from Magnesium alloys in a single step process involving high speed injection molding of semi-solid thixotropic alloys. A description of the process and status of commercial developments will be presented.. The mechanical properties and microstructures of Thixomolded® AZ-91D magnesium materials will be presented. Tensile strengths of semi-solid AZ-91D at both room temperature and elevated temperatures ( 373K, 423K) are compared with die cast AZ-91D. Data on enhanced creep properties of Thixomolded® AZ91-D alloy relative to die cast AZ-91D will be examined with respect to relative changes in microstructural features. Controlling the percent solids in the semi-solid state prior to injection molding can lead to improved creep performance for use in net-shape automotive components.
Technical Paper

Thermal Effect on Three-Way Catalyst Deactivation and Improvement

1987-11-08
871192
Thermal effects on three-way catalysts and deterioration characteristics were studied. Aging atmosphere (oxidizing or reducing) and temperature contributed to catalyst performance deterioration. Catalysts sharply lost their activities under oxidizing conditions at an aging temperature of 900°C and above. Thermal degradation was found due mainly to the decrease in the surface area of alumina coated on the substrate and the increase in the size of cerium oxide (CeO2) crystal particle, an oxgen storage component (OSC). Also observed was a close correlation between the alumina surface area loss and the volume loss of micro pores with their radius less than 100 Å. Tests demonstrated that the catalyst thermal degradation can be reduced if the alumina micro pore volume loss and the CeO2 crystal particle size increase are restrained.
Technical Paper

The Effect of Ceria Content on the Performance of a NOx Trap

2003-03-03
2003-01-1160
A study was performed on a lean NOx trap in which the loading of a ceria-containing mixed oxide in the washcoat was varied. After a mild stabilization of the traps, the time required to purge the NOx trap generally increased with increasing amount of mixed oxide. The purge NOx release also increased with increasing mixed oxide level but was greatly diminished after thermal aging. The sulfur tolerance of the NOx trap improved as the mixed oxide content was increased from 0% to 37%. The sample with 0% mixed oxide was more difficult to desulfate than the other samples due to poor water-gas-shift capability. After thermal aging, the NOx reduction efficiency on a 60 second lean/5 second rich cycle was highest for the samples with 0% to 37% mixed oxide at evaluation temperatures of 400°C to 500°C.
Technical Paper

The Complex Cornering Compliance Theory and its Application to Vehicle Dynamics Characteristics

2002-03-04
2002-01-1218
The Complex Cornering Compliance (Complex CC) theory is a method to cascade desired vehicle dynamics characteristics into suspension / steering system applying the Equivalent Cornering Power based on a single track model. Complex CC is used to find front / rear slip angle and time constant after converting the system elements into complex numbers as “slip angle per 1g (gravity) of lateral acceleration and occurrence time”. This enables an analysis of the contribution rate of the slip angle and time constant on the system elements and the impact on lateral force.
Technical Paper

Seat Lumbar Support Evaluation With ASPECT Manikin

2005-04-11
2005-01-1007
Seat lumbar support is thought to be essential for seating comfort as it plays important role in the driver's fatigue during long term driving. We tried to evaluate the lumbar support performance objectively with Seat Pressure Distribution. First, the tolerance in the measurement was eliminated by application of ASPECT manikin that reproduced a human seating torso posture [1, 2]. Second, an analysis method to visualize the seat support balance on the human back was developed. Third, a hypothesis for the optimal support balance to minimize the fatigue was proposed according to the fatigue growing mechanisms. Examining the deviation of each seat result from the optimal support, the performances were quantitatively evaluated. In addition to that, the effect of the lumbar support adjuster was taken into consideration to predict the market evaluation more precisely.
Technical Paper

Seat Lateral Support Evaluation With SAE Manikin

2005-04-11
2005-01-1006
In this report, we proposed an objective evaluation method of the seat lateral support according to the mechanisms to create the performance differences that we reported previously [1]. First, we showed an effect of scrutinizing Seat Pressure Distribution's change during vehicle turn to gain a quantitative index for explaining subjective evaluation results. Second, we showed the examples of the differences of the results according to the subjects and selected the best-correlated subject among them with a market survey result. Then, we contrived a loading condition to SAE manikin to reproduce the subject's Seat Pressure Distribution. Final, by a specific calculation of the Seat Pressure Distribution, the method to indicate the performance rating that had strong correlation with market survey was clarified.
Technical Paper

Planar Measurements of NO in an S.I. Engine Based on Laser Induced Fluorescence

1997-02-24
970877
To investigate NO formation in a combustion flame, PLIF (Planar Laser-Induced-Fluorescence) technique was applied to measure the NO fluorescence distribution in a constant-volume combustion chamber and in a sparkignition engine. The NO fluorescence distribution was taken by an image intensified CCD camera. In the constant-volume combustion chamber, the high NO fluorescence intensity was concentrically observed in the thin flame zone along the flame front. In postflame gas behind the flame zone, the NO fluorescence was widely distributed with weak intensity. In the case of the engine, the fluorescence was distributed in the broad flame zone. The fluorescence intensity had high value near the flame front, and decreased from the flame front to the postflame gas. As the equivalence ratio was changed, the fluorescence intensity reached maximum value at slightly lean condition.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Investigation of Acceleration Performance Feeling on a Rotary Engine Sports Car with Driving Simulator

2003-03-03
2003-01-0121
Subjective evaluation tests of “Acceleration Performance Feeling” with a driving simulator have been carried out on a rotary engine sports car. Additionally, although the test condition is limited, a test on an in-line four-cylinder engine sedan has been carried out. Influencing factors were analyzed through the experimental design and the influences of acceleration, gas pedal controllability, engine sound and their interactions were quantified. As the result, it has been found that the interactions must be considered in addition to main effect of each factor to improve users' evaluation especially on a rotary engine sports car. Furthermore, it is concluded that influencing factors are different between a rotary engine sports car and an in-line four-cylinder engine sedan.
Journal Article

Flow Structures above the Trunk Deck of Sedan-Type Vehicles and Their Influence on High-Speed Vehicle Stability 2nd Report: Numerical Investigation on Simplified Vehicle Models using Large-Eddy Simulation

2009-04-20
2009-01-0006
In the present study, two kinds of simplified vehicle models, which can reproduce flow structures around the two sedan-type vehicles in the previous study, are constructed for the object and the unsteady flow structures are extracted using Large-Eddy Simulation technique. The numerical results are validated in a stationary condition by comparing the results with a wind-tunnel experiment and details of steady and unsteady flow characteristics around the models, especially above the trunk deck, are investigated. In quasi- and non- stationary manner with regard to vehicle pitch motion, unsteady flow characteristics are also investigated and their relations to an aerodynamic stability are discussed.
Technical Paper

Evaluation of Aerodynamic Noise Generated in Production Vehicle Using Experiment and Numerical Simulation

2003-03-03
2003-01-1314
Aerodynamic noise generated in production vehicle has been evaluated using experiment and numerical simulation. Finite difference method (FDM) and finite element method (FEM) are applied to analyze the flow field, and Lighthill's analogy is employed to conduct acoustic analysis. The flow fields around front-pillar obtained by numerical simulations agree with those by experiment for two cases with different front-pillar shape. Moreover, the distribution of acoustic source predicted by FEM is consistent with that obtained by experiment. Present study ascertained the feasibility and applicability of FEM with SGS model towards prediction of aerodynamic noise generated in production vehicle.
Technical Paper

Evaluation and Analysis of Strength of All-Ceramic Swirl Chamber for Diesel Engines

1800-01-01
871205
An all-ceramic swirl chamber has been developed and analyses and evaluations concerning the strength of silicon nitride ceramic (Si3N4) have been performed with a view to using it for the entire internal wall surface of the swirl chamber. The strength characteristics of Si3N4 and their effect and variation have been determined. On the basis of measurements and analyses of thermal stresses, assembling stresses, etc., investigation of the most suitable construction and assembling methods to reduce load stresses on ceramic, and various kinds of duration tests, the swirl chamber has been confirmed to have the required durability. This engine was found to comply with the 1987 U.S. diesel particulate regulation.
Technical Paper

Effect of Cooling of Burned Gas by Vertical Vortex on NOx Reduction in Small DI Diesel Engines

2004-03-08
2004-01-0125
A new nitrogen oxide (NOx) reduction concept is suggested. A strong vertical vortex generated within the combustion bowl can mix hot burned gas into the cold excess air at the center of the combustion-bowl. This makes the burned gas cool rapidly. Therefore, it is possible to reduce NOx, which would be produced if the burned gas remained hot. In this paper the effect was verified with a 3D-CFD analysis of spray, air, combustion gas, and thermal efficiency as well as experiments on a 4-cylinder 2.0-liter direct injection diesel engine. The results confirmed that the vertical vortex was able to be strengthened with the change of spray characteristics and the combustion bowl shapes. This strengthened vertical vortex was able to reduce NOx by approximately 20% without making smoke and thermal-efficiency worse. Above results proved the effectiveness of this method.
Technical Paper

Driver Behavior Under a Collision Warning System - A Driving Simulator Study

1997-02-24
970279
Collision warning systems are expected to be an effective countermeasure to reduce traffic accidents; however there have been relatively few studies on the effects of such warning systems on the driver's collision avoidance behavior. In this study, a driving simulator which had a large motion system was used, and 45 subjects experienced crash imminent situations in which the preceding cars suddenly decelerated while the subject looked off the road. Analyzing the subjects' collision avoidance behaviors, it was found that the braking response time and the number of simulated collisions were substantially decreased with collision warnings. Furthermore, potential reduction of rear-end collisions on the road was estimated by modeling the driver's braking response.
Technical Paper

Developments of the Reduced Chemical Reaction Scheme for Multi-Component Gasoline Fuel

2015-09-01
2015-01-1808
The reduced chemical reaction scheme which can take the effect of major fuel components on auto ignition timing into account has been developed. This reaction scheme was based on the reduced reaction mechanism for the primary reference fuels (PRF) proposed by Tsurushima [1] with 33 species and 38 reactions. Some pre-exponential factors were modified by using Particle Swarm Optimization to match the ignition delay time versus reciprocal temperature which was calculated by the detailed scheme with 2,301 species and 11,116 elementary chemical reactions. The result using the present reaction scheme shows good agreements with that using the detailed scheme for the effects of EGR, fuel components, and radical species on the ignition timing under homogeneous charge compression ignition combustion (HCCI) conditions.
Technical Paper

Development of a Low Pumping Loss Rotary Engine with a New Port Mechanism

1989-08-01
891677
The thermal efficiency of a three-rotor rotary engine (RE) was improved by a reduction in the pumping losses. These pumping losses were reduced by using a new port mechanism. The port mechanism utilized was an indirect recirculation type of late intake port closing. It was equipped with a recirculation chamber outside of the housings. This chamber interconnected the recirculation ports within each housing. This port mechanism yielded three main benefits 1. A Considerable reduction in the pumping losses. 2. A uniformly distributed air-fuel mixture in each housing. 3. A limited amount of residual gas in the housing. This residual gas was under specific pulsations by the recirculation chamber thus preventing deterioration in combustion under light loads. The above phenomena were clarified by experiments and simulations. The possibility of a reduction in exhaust emissions was also investigated.
Technical Paper

Development of Shape Fixing Press Forming Technology for High Strength Steel Sheet

2003-10-27
2003-01-2825
New press forming method was developed for ensuring shape-accuracy of draw parts with high strength steel sheet(HSS) of very high tensile strength such as 780MPa. In the new method, step drawing method was combined with crash forming method by applying cam flange die structure to drawing dies. Furthermore, the die structure in the method is simple. At the trial press-forming by the model die even with 780MPa high strength steel sheets, the side wall warps in particular were restrained within a specified tolerance, that is ±0.00067[1/mm] of the variation of curvature(Δ 1/ ρ). Now the method is applied to press-forming some automotive body parts, such as front side member, etc.
Technical Paper

Development of Non-equilibrium Plasma and Combustion Integrated Model for Reaction Analysis

2019-12-19
2019-01-2349
Control of self-ignition timing in a HCCI engine is still a major technical issue. Recently, the application of a non-equilibrium plasma using repetitively discharge has been proposed as the promising technology. However, non-equilibrium plasma reaction in higher hydrocarbon fuel mixture is very complicated. Hence, there have been few calculation reports considering a series of reactions from non-equilibrium plasma production to high temperature oxidation process. In this study, 0-dimensional numerical simulation model was developed in which both reactions of plasma chemistry and high temperature oxidation combustion was taken into account simultaneously. In addition, an ODEs solver has been applied for the reduction of calculation time in the simulation. By comparing calculation results with experiment such as self-ignition timing, the validity of the developed numerical model has been evaluated.
Technical Paper

Development of Module Carriers by Injection Molding with Long Glass-Fiber Reinforced Polypropylene

2003-03-03
2003-01-0791
We have developed injection molding technologies consist of a new high-strength long-glass fiber reinforced polypropylene (PPLGF). They are key technologies of new modular design for substantial reductions of weight and cost, offering integrated functionality. The strength of injection molded parts are three times stronger than that of the conventional material. This technology makes it possible to replace parts from steel stamping and press molded glass-mat reinforced polypropylene. The front end and door modules of Mazda 6 employ the module carriers using this material, resulting in dramatic weight and cost savings.
X