Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Yield Mapping with Digital Aerial Color Infrared (CIR) Images

1999-09-14
1999-01-2847
Yield potential was predicted and mapped for three corn fields in Central Illinois, using digital aerial color infrared images. Three methods, namely statistical (regression) modeling, genetic algorithm optimization and artificial neural networks, were used for developing yield models. Two image resolutions of 3 and 6 m/pixel were used for modeling. All the models were trained using July 31 image and tested using images from July 2 and August 31, all from 1998. Among the three models, artificial neural networks gave best performance, with a prediction error less than 30%. The statistical model resulted in prediction errors in the range of 23 to 54%. The lower resolution images resulted in better prediction accuracy compared to resolutions higher than or equal to the yield resolution. Images after pollination resulted in better accuracy compared to images before pollination.
Technical Paper

Yield Mapping of Soybeans and Corn Using GPS

1995-09-01
952112
Data obtained when harvesting with a combine equipped with a yield monitor were used to develop yield maps. A prototype yield monitor was developed that uses a combination of light emitters and receivers mounted in a rectangular frame. The monitor was mounted in the combine in the top of the clean grain elevator. As grain flows through the monitor, a voltage change proportional to light reduction was recorded. This voltage was then correlated to grain flow rate. At the same time, site-specific location was recorded using the global positioning satellites (GPS) system. The location data, yield monitor output, cutting width, and combine forward speed were stored in a spreadsheet format. The data were then used to prepare the yield maps.
Technical Paper

Why Not 125 BMEP in an L-Head Truck Engine?

1939-01-01
390130
HIGH output per cubic inch of piston displacement is desirable not alone for the purpose of being able to transport more payload faster, but more particularly for the invariably associated byproduct of lower specific fuel consumption, and especially at road-load requirements. The only way of accomplishing this purpose is through the use of higher compression ratios, and the limiting factors for this objective are fuel distribution and the operating temperatures of the component parts. A manifold is proposed which not only definitely improves distribution at both full and road loads, but has the inherent additional advantage of reducing the formation of condensate, thus still further facilitating a reduction in road-load specific fuel consumption. Hydraulic valve lifters, obviation of mechanical and thermal distortion, and controlled water flow are the essentials in improved cooling.
Standard

Wheel Chocks

2020-10-19
CURRENT
J348_202010
This SAE standard presents the basic information required for the design and manufacture of a wheel chock.
Technical Paper

Weed Recognition Using Machine Vision and Color Texture Analysis

1996-08-01
961759
The environmental impact from herbicide utilization has been well documented in recent years. The reduction in weed control with out a viable alternative will likely result in decreased per acre production and thus higher unit production cost. The potential for selective herbicide application to reduce herbicide usage and yet maintain adequate weed control has generated significant interest in different forms of remote sensing of agricultural crops. This research evaluated the color co-occurrence texture analysis technique to determine its potential for utilization in crop groundcover identification. A program termed GCVIS (Ground Cover VISion) was developed to control an ATT TARGA 24 frame grabber; and generate HSI color features from the RGB format pixel data, HSI CCM matrices and the co-occurrence texture feature data.
Technical Paper

Wear Trends of Axial Piston Type Pumps Operating in Severe Environments

1989-09-01
891868
Axial piston type pumps are often exposed to severe operating conditions because of the duty cycle, the environment, or, in some situations, poor maintenance and even abuse. The detrimental effects on the pump and the hydraulic system as a result of these adverse conditions are often not known or predictable. In this study, four controlled severe operating conditions were imposed on four identical axial piston type pumps. They included 1) constant high load pressure and normal fluid temperature, 2) constant high load pressure and elevated fluid temperature, 3) cyclic load pressure and normal fluid temperature, and 4) cyclic load pressure and elevated fluid temperature. The tests were long-term; they were run continuously for up to 5000 hours. The pump wear was monitored in all cases using ferrography. In addition, the condition of the fluid was monitored and the circuit filters were examined periodically. The results of the findings are presented in this paper.
Technical Paper

Wear Study of Coated Heavy Duty Exhaust Valve Systems in a Experimental Test Rig

2012-04-16
2012-01-0546
The exhaust valve system of combustion engines experiences a very complex contact situation of frequent impact involving micro sliding, high and varying temperatures, complex exhaust gas chemistry and possible particulates. The wear rate has to be extremely low, and the individual wearing events operate at a scale that is very demanding to detect. The tribological conditions in the exhaust valve system are expected to become even worse for engines that will follow the future emission regulations. The regulations demand reduced amounts of soot and particles, sulfur compounds, etc., which today act beneficial for the seating surfaces. The reductions are expected to increase the metal-to-metal contact.
Technical Paper

Waste Heat Recovery from Multiple Heat Sources in a HD Truck Diesel Engine Using a Rankine Cycle - A Theoretical Evaluation

2012-09-10
2012-01-1602
Few previous publications investigate the possibility of combining multiple waste heat sources in a combustion engine waste heat recovery system. A waste heat recovery system for a HD truck diesel engine is evaluated for utilizing multiple heat sources found in a conventional HD diesel engine. In this type of engine more than 50% of heat energy goes futile. The majority of the heat energy is lost through engine exhaust and cooling devices such as EGRC (Exhaust gas recirculation cooler), CAC (Charge air cooler) and engine cooling. In this paper, the potential of usable heat recuperation from these devices using thermodynamic analysis was studied, and also an effort is made to recuperate most of the available heat energy that would otherwise be lost. A well-known way of recuperating this heat energy is by employing a Rankine cycle circuit with these devices as heat sources (single loop or dual loop), and thus this study is focused on using a Rankine cycle for the heat recovery system.
Technical Paper

Waste Heat Recovery by an Organic Rankine Cycle for Heavy Duty Vehicles

2016-04-05
2016-01-0234
The use of reciprocating internal combustion engines (ICE) dominates the sector of the in-the-road transportation sector, both for light and heavy duties. CO2 reduction is the technological driver, considering the severe worldwide greenhouse commitments. In ICE more than one third of the fuel energy used is rejected to the environment as thermal waste through the exhaust gases. Therefore, a greater fuel economy could be achieved, recovering this energy and converting it into useful electric power on board. Financial benefits will be produced in terms of fuel cost which will rebound similar benefits in terms of CO2 emitted. For long hauling vehicles, which run for thousands of miles, frequently at fixed engine operating conditions, this recovery appears very worthy of attention. In this activity, an ORC-based power unit was designed, built and tested fed by a heavy duty diesel engine, so contributing to the huge efforts on going in that specific sector.
Technical Paper

Vision Assisted Tractor Guidance for Agricultural Vehicles

1992-09-01
921650
Computer algorithms were developed for generating the guidance parameters necessary to steer an agricultural tractor. A variety of field operations were considered in order that the guidance program be suited for general applications including travel in curved rows and following a single edge. Testing of the guidance algorithm was performed in the laboratory using simulated and videotaped images of rowcrops and tilled soil. From the images, yaw angle change of the tractor, direction value and offset error were computed. Prediction of the direction value and offset error compared well to measured values. Accuracy of the direction value was within +/- 0.5 degrees while the offset error was within +/- 0.05 meters. Good performance was observed for straight and curved rows as well as following a single edge.
Technical Paper

Virtual Instrumentation of a Soil Bin for Improved Precision

1999-09-14
1999-01-2825
The existing instrumentation of a soil bin was retrofitted with virtual instrumentation techniques to achieve improved repeatability and more precise measurements. Current-loop sensors were added to the prime mover for improved speed control. Soil preparation operations were instrumented to determine penetrometer forces as a function of soil penetration depth, soil surface smoothness, compaction force, and soil surface elevation. Test hitch-points for agricultural implements were instrumented with wheatstone bridge force transducers. Implement depth was found with ratiometric linear transducers. Distance and speed determinations utilized an optical encoder with a resolution of 3.0 × 10-4 m. Temperature measurements were also recorded with solid state current transducers.
Journal Article

Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines

2015-04-14
2015-01-0872
Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size. In addition, it enables the introduction of advanced, high-efficient combustion concepts. The application in truck engines is foreseen, but challenges need to be overcome related to durability, increased system costs, and impact on the cylinder head. In this paper, a new single cylinder pressure sensor concept for heavy-duty Diesel engines is presented. Compared to previous studies, this work focuses on heavy-duty Diesel powertrains, which are characterized by a relatively flexible crank shaft in contrast to the existing passenger car applications.
Technical Paper

Vickers New PVH Variable Volume Pumps

1991-09-01
911803
This paper outlines the design philosophy and evaluation of the new “H” series variable displacement, medium pressure, open-circuit, axial piston hydraulic pumps. The “H” series is based on previously existing, technically successful, rotating group designs, but has significant design improvements affecting the areas of: Unit Weight Envelope Size Ease of Assembly, Disassembly, Repairability and Modification Alternate Fluid Capabilities The “H” series is a family of naturally aspirated pumps nominally rated at 250 or 275 bar (3625 or 4000 psig), depending on system operating parameters. The geometric displacements of the four units in the series are as follows: 57cc (3.5 cu. in./rev.) 74cc (4.5 cu. in./rev.) 98cc (6.0 cu. in./rev.) 131cc (8.0 cu. in./rev.)
Technical Paper

Vibration Reduction in Diesel Fuel System Using 1D Simulation

2012-09-24
2012-01-1971
Good performance of fuel system is critical for fuel efficiency, combustion process, emissions, start ability, acceleration and combustion noise. The fuel system design is a complicated process. Simulation tools are playing an important role in virtual design. They are used to evaluate performance, optimize the design, and provide understanding for performance or durability related problem. This paper illustrates how a 1D system simulation tool is utilized to investigate an observed failure of a high pressure hose. The simulation identifies the dominant modes in the fuel system and determines the engine speed at which the fuel system mode is excited. At various engine speeds, the simulation investigates the magnitude of pressure pulsation in the high pressure hose of the fuel system. Finally, the 1D simulation provides the design optimization approach to suppress the oil pressure pulsation and reduce the structure vibration.
Technical Paper

Vehicle-borne Scanning for Detailed 3D Terrain Model Generation

2005-11-01
2005-01-3557
Three-dimensional models of real world terrain have application in a variety of tasks, but digitizing a large environment poses constraints on the design of a 3D scanning system. We have developed a Mobile Scanning System that works within these constraints to quickly digitize large-scale real world environments. We utilize a mobile platform to move our sensors past the scene to be digitized - fusing the data from cm-level accuracy laser range scanners, positioning and orientation instruments, and high-resolution video cameras - to provide the mobility and speed required to quickly and accurately model the target scene.
Technical Paper

Vector Control of a Hydraulic Crane

1992-09-01
921659
Mobile hydraulic equipment are today operated manually to a very large extent. There are, however, some applications where substantial benefits would be obtaind if some kind of feedback and more sophisticated control was used. One such application is the control of a crane. Usually the operator controlls the flow to each of the pistons so that the crane tip is moved in the desired direction (Fig. 1). Since many mobile hydraulic valves packages have electronic input and there exists built in position transducers for the pistons, it seems to be rather straightforward to introduce vector control of the crane tip directly. That is, the operator commands controlls the direction and speed of the crane tip. Here, a control algorithm is described that allows the use of mobile electrohydraulic proportional valves while still having accurate vector control of the crane tip.
X