Refine Your Search

Topic

Search Results

Journal Article

Trends in Performance Characteristics of Modern Automobile SI and Diesel Engines

2009-06-15
2009-01-1892
A prior study (Chon and Heywood, [1]) examined how the design and performance of spark-ignition engines evolved in the United States during the 1980s and 1990s. This paper carries out a similar analysis of trends in basic engine design and performance characteristics over the past decade. Available databases on engine specifications in the U.S., Europe, and Japan were used as the sources of information. Parameters analyzed were maximum torque, power, and speed; number of cylinders and engine configuration, cylinder displacement, bore, stroke, compression ratio; valvetrain configuration, number of valves and their control; port or direct fuel injection; naturally-aspirated or turbocharged engine concepts; spark-ignition and diesel engines. Design features are correlated with these engine’s performance parameters, normalized by engine and cylinder displacement.
Technical Paper

Time-Resolved Measurements of Hydrocarbon Mass Flowrate in the Exhaust of a Spark-Ignition Engine

1972-02-01
720112
Experimental measurements of the instantaneous exhaust gas temperature, mass flowrate, and hydrocarbon concentration have been made in the exhaust of a single cylinder research engine. The temperature measurements were accomplished using an infrared optical technique and observing the radiation of the exhaust gas at the 4.4 μm band of CO2. Instantaneous exhaust gas mass flowrates were monitored by placing a restriction in the exhaust manifold and measuring the instantaneous pressures across the restriction. Time-resolved hydrocarbon concentrations were measured using a fast-acting sampling valve with an open time of 2 ms. From these measurements, the hydrocarbon mass flowrate is calculated as a function of crank angle.
Technical Paper

Time Resolved Measurements of the Exhaust from a Jet Ignition Prechamber Stratified Charge Engine

1977-02-01
770043
In the jet-ignition prechamber stratified-charge spark-ignition engine, the fuel-air mixture at the time of combustion is non-uniform. Instantaneous exhaust mass flow rates and emission concentrations from this engine were measured and used to determine the degree to which this charge stratification persists in the products of combustion immediately downstream of the exhaust valve throughout the exhaust process. In all the cases studied no appreciable variations, during the exhaust process, were detected either in the air-fuel ratio of the exhaust gases as a function of time or in the instantaneous concentrations of CO2, O2 and NOx. The experimentally obtained instantaneous HC and CO concentrations in the exhaust, however, displayed large fluctuations and were used to study the sources of these two pollutants in this engine.
Technical Paper

Time Resolved Measurements of Exhaust Composition and Flow Rate in a Wankel Engine

1975-02-01
750024
Measurements were made of exhaust histories of the following species: unburned hydrocarbons (HC), carbon monoxide, carbon dioxide, oxygen, and nitric oxide (NO). The measurements show that the exhaust flow can be divided into two distinct phases: a leading gas low in HC and high in NO followed by a trailing gas high in HC and low in NO. Calculations of time resolved equivalence ratio throughout the exhaust process show no evidence of a stratified combustion. The exhaust mass flow rate is time resolved by forcing the flow to be locally quasi-steady at an orifice placed in the exhaust pipe. The results with the quasi-steady assumption are shown to be consistent with the measurements. Predictions are made of time resolved mass flow rate which compare favorably to the experimental data base. The composition and flow histories provide sufficient information to calculate the time resolved flow rates of the individual species measured.
Journal Article

The Underlying Physics and Chemistry behind Fuel Sensitivity

2010-04-12
2010-01-0617
Recent studies have shown that for a given RON, fuels with a higher sensitivity (RON-MON) tend to have better antiknock performance at most knock-limited conditions in modern engines. The underlying chemistry behind fuel sensitivity was therefore investigated to understand why this trend occurs. Chemical kinetic models were used to study fuels of varying sensitivities; in particular their autoignition delay times and chemical intermediates were compared. As is well known, non-sensitive fuels tend to be paraffins, while the higher sensitivity fuels tend to be olefins, aromatics, diolefins, napthenes, and alcohols. A more exact relationship between sensitivity and the fuel's chemical structure was not found to be apparent. High sensitivity fuels can have vastly different chemical structures. The results showed that the autoignition delay time (τ) behaved differently at different temperatures. At temperatures below 775 K and above 900 K, τ has a strong temperature dependence.
Technical Paper

The Importance of Injection System Characteristics on Hydrocarbon Emissions from a Direct-Injection Stratified-Charge Engine

1990-02-01
900609
The effects of injection variability, low velocity fuel injection, and injector orifice size on unburned hydrocarbon emissions were studied in a direct-injection stratified-charge (DISC) engine. The engine incorporated a combustion process similar to the Texaco Controlled Combustion System (TCCS) and was operated with gasoline. The variability in the amount of fuel injected per cycle was found to have a negligible effect on HC emissions. Changing the amount of fuel injected at low velocity at the end of injection impacted the HC emissions by up to 50%. A positive pressure differential between the injection line and the combustion chamber when the injector needle closed resulted in more fuel injected at low velocity and increased HC emissions. High speed single frame photography was used to observe the end of injection. Injectors with smaller orifices had substantially lower HC emissions than the baseline injector.
Technical Paper

The Effects of Crevices on the Engine-Out Hydrocarbon Emissions in SI Engines

1994-03-01
940306
To understand the effects of crevices on the engine-out hydrocarbon emissions, a series of engine experiments was carried out with different piston crevice volumes and with simulated head gasket crevices. The engine-out HC level was found to be modestly sensitive to the piston crevice size in both the warmed-up and the cold engines, but more sensitive to the crevice volume in the head gasket region. A substantial decrease in HC in the cold-to-warm-up engine transition was observed and is attributed mostly to the change in port oxidation.
Technical Paper

The Dispersion of Pollutants from Aircraft

1971-02-01
710322
Two aspects of the dispersion of pollutants from aircraft are reviewed. The first is the dispersal of aircraft exhaust emissions in the vicinity of airports; the second is the dispersal of exhaust trails in the upper atmosphere. Techniques available for modeling this dispersal and how they might be applied to the airport problem are discussed. Field studies of airport pollution are then reviewed to assess current pollutant levels around airports and the aircraft's contribution to those levels. The possibility of contrail formation from jet emissions at high altitude is then considered and the effect of uncertainties in the trail mixing processes evaluated.
Technical Paper

Simulation Studies of the Effects of Turbocharging and Reduced Heat Transfer on Spark-Ignition Engine Operation

1980-02-01
800289
A computer simulation of the four-stroke spark-ignition engine cycle has been used to examine the effects of turbocharging and reduced heat transfer on engine performance, efficiency and NOx emissions. The simulation computes the flows into and out of the engine, calculates the changes in thermodynamic properties and composition of the unburned and burned gas mixtures within the cylinder through the engine cycle due to work, heat and mass transfers, and follows the kinetics of NO formation and decomposition in the burned gas. The combustion process is specified as an input to the program through use of a normalized rate of mass burning profile. From this information, the simulation computes engine power, fuel consumption and NOx emissions. Wide-open-trottle predictions made with the simulation were compared with experimental data from a 5.7ℓ naturally-aspirated and a 3.8ℓ turbocharged production engine.
Technical Paper

Schlieren Visualization of the Flow and Density Fields in the Cylinder of a Spark-Ignition Engine

1980-02-01
800044
The design and operating characteristics of a single-cylinder transparent spark-ignition engine for Schlieren flow visualization are described. The engine is built on a CFR engine crankcase using the CFR piston and cylinder as a crosshead for the square cross-section piston and cylinder assembly. The square cross-section assembly has two parallel steel walls and two parallel quartz glass walls to permit optical access to the entire cylinder volume over the complete engine operating cycle. The CFR head and valve mechanism completes the assembly. It is shown that the engine operates satisfactorily with propane fuel under typical engine operating conditions. Schlieren short time-exposure photographs and high speed movies were taken to define details of the flow and density fields through the engine cycle. Photographs which illustrate key features of these fields are presented and described.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

Photographic and Performance Studies of Diesel Combustion With a Rapid Compression Machine

1974-02-01
740948
Photographic and performance studies with a Rapid Compression Machine at the Massachusetts Institute of Technology have been used to develop insight into the role of mixing in diesel engine combustion. Combustion photographs and performance data were analyzed. The experiments simulate a single fuel spray in an open chamber diesel engine with direct injection. The effects of droplet formation and evaporation on mixing are examined. It is concluded that mixing is controlled by the rate of entrainment of air by the fuel spray rather than the dynamics of single droplets. Experimental data on the geometry of a jet in a quiescent combustion chamber were compared with a two-phase jet model; a jet model based on empirical turbulent entrainment coefficients was developed to predict the motion of a fuel jet in a combustion chamber with swirl. Good agreement between theory and experiment was obtained.
Technical Paper

Performance Scaling of Spark-Ignition Engines: Correlation and Historical Analysis of Production Engine Data

2000-03-06
2000-01-0565
This study examines the scaling between engine performance, engine configuration, and engine size and geometry, for modern spark-ignition engines. It focuses especially on design features that impact engine breathing. We also analyze historical trends to illustrate how changes in technology have improved engine performance. Different geometric parameters such as cylinder displacement, piston area, number of cylinders, number of valves per cylinder, bore to stroke ratio, and compression ratio, in appropriate combinations, are correlated to engine performance parameters, namely maximum torque, power and brake mean effective pressure, to determine the relationships or scaling laws that best fit the data. Engine specifications from 1999 model year vehicles sold in the United States were compiled into a database and separated into two-, three-, and four-valves-per-cylinder engine categories.
Technical Paper

Models for Heat Transfer, Mixing and Hydrocarbon Oxidation in a Exhaust Port of a Spark-Ignited Engine

1980-02-01
800290
The fate of hydrocarbon species in the exhaust systems of spark-ignition engines is an important part of the overall hydrocarbon emissions problem. In this investigation models were developed for the instantaneous heat transfer, fluid mixing, and hydrocarbon oxidation in an engine exhaust port. Experimental measurements were obtained for the instantaneous cylinder pressure and instantaneous gas temperature at the exhaust port exit for a range of engine operating conditions. These measurements were used to validate the heat transfer model and to provide data on the instantaneous cylinder gas state for a series of illustrative exhaust port hydrocarbon oxidation computations as a function of engine operating and design variables. During much of the exhaust process, the exhaust port heat transfer was dominated by large-scale fluid motion generated by the jet-like flow at the exhaust valve.
Technical Paper

Modeling the Spark Ignition Engine Warm-Up Process to Predict Component Temperatures and Hydrocarbon Emissions

1991-02-01
910302
In order to understand better the operation of spark-ignition engines during the warm-up period, a computer model had been developed which simulates the thermal processes of the engine. This model is based on lumped thermal capacitance methods for the major engine components, as well as the exhaust system. Coolant and oil flows, and their respective heat transfer rates are modeled, as well as friction heat generation relations. Piston-liner heat transfer is calculated based on a thermal resistance method, which includes the effects of piston and ring material and design, oil film thickness, and piston-liner crevice. Piston/liner crevice changes are calculated based on thermal expansion rates and are used in conjunction with a crevice-region unburned hydrocarbon model to predict the contribution to emissions from this source.
Technical Paper

Modeling the Dynamics and Lubrication of Three Piece Oil Control Rings in Internal Combustion Engines

1998-10-19
982657
The oil control ring is the most critical component for oil consumption and friction from the piston system in internal combustion engines. Three-piece oil control rings are widely used in Spark Ignition (SI) engines. However, the dynamics and lubrication of three piece oil control rings have not been thoroughly studied from the theoretical point of view. In this work, a model was developed to predict side sealing, bore sealing, friction, and asperity contact between rails and groove as well as between rails and the liner in a Three Piece Oil Control Ring (TPOCR). The model couples the axial and twist dynamics of the two rails of TPOCR and the lubrication between two rails and the cylinder bore. Detailed rail/groove and rail/liner interactions were considered. The pressure distribution from oil squeezing and asperity contact between the flanks of the rails and the groove were both considered for rail/groove interaction.
Technical Paper

Mixture Preparation in a SI Engine with Port Fuel Injection During Starting and Warm-Up

1992-10-01
922170
The in-cylinder hydrocarbon (HC) mole fraction was measured on a cycle-resolved basis during simulated starting and warm-up of a port-injected single-cylinder SI research engine on a dynamometer. The measurements were made with a fast-response flame ionization detector with a heated sample line. The primary parameters that influence how rapidly a combustible mixture builds up in the cylinder are the inlet pressure and the amount of fuel injected; engine speed and fuel injection schedule have smaller effects. When a significant amount of liquid fuel is present at the intake port in the starting process, the first substantial firing cycle is often preceded by a cycle with abnormally high in-cylinder HC and low compression pressure. An energy balance analysis suggests that a large amount of liquid vaporization occurs within the cylinder in this cycle.
Technical Paper

Mixture Preparation Mechanisms in a Port Fuel Injected Engine

2005-05-11
2005-01-2080
An experimental study was carried out that qualitatively examined the mixture preparation process in port fuel injected engines. The primary variables in this study were intake valve lift, intake valve timing, injector spray quality, and injection timing. A special visualization engine was used to obtain high-speed videos of the fuel-air mixture flowing through the intake valve, as well as the wetting of the intake valve and head in the combustion chamber. Additionally, videos were taken from within the intake port using a borescope to examine liquid fuel distribution in the port. Finally, a simulation study was carried out in order to understand how the various combinations of intake valve lifts and timings affect the flow velocity through the intake valve gap to aid in the interpretation of the videos.
Technical Paper

Measurement of Gasoline Absorption into Engine Lubricating Oil

1996-05-01
961229
A method to collect and speciate the components of gasoline absorbed in the lubricant oil using gas chromatography has been developed. Samples were collected continuously from the piston skirt, baffle and sump in a Saturn engine. A long (18 hours) test was performed to determine the build up of hydrocarbons in the sump, and a shorter (25 min) test was performed to determine the build up of hydrocarbons in the piston skirt and baffle during engine warm-up. The first experiment showed that the total hydrocarbon concentration in the sump oil reached a steady state of about 1.35% mass fraction after 11 hours of engine operation. The relative concentration of individual fuel hydrocarbon species absorbed in the oil increases exponentially with boiling point. Most of the identified species in the oil consist of the heavy end aromatics. Similar compositions but lower concentrations were found for samples collected from the piston skirt during engine warm-up.
X