Refine Your Search

Topic

Author

Search Results

Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

The Importance of High-Frequency, Small-Eddy Turbulence in Spark Ignited, Premixed Engine Combustion

1995-10-01
952409
The different roles played by small and large eddies in engine combustion were studied. Experiments compared natural gas combustion in a converted, single cylinder Volvo TD 102 engine and in a 125 mm cubical cell. Turbulence is used to enhance flame growth, ideally giving better efficiency and reduced cyclic variation. Both engine and test cell results showed that flame growth rate correlated best with the level of high frequency, small eddy turbulence. The more effective, small eddy turbulence also tended to lower cyclic variations. Large scales and bulk flows convected the flame relative to cool surfaces and were most important to the initial flame kernel.
Technical Paper

The Effects of Turbulence of Spark-Ignited, Ultra Lean, Premixed Methane-Air Flame Growth in a Combustion Chamber

1995-10-01
952410
The effects of turbulence on 60% stoichiometric, premixed methane-air flame propagation were investigated using high speed schlieren video and pressure trace analyses. The mixtures were centrally spark-ignited at 300 K and 101 kPa in a 125 mm cubical chamber. Turbulence was up to 2 m/s intensity with 2 to 8 mm integral scale. With quiescent mixtures, buoyancy convected the slow-burning flame upward onto the upper wall, resulting in dramatic heat loss. With turbulence, the burning rate was enhanced profoundly, though partial flame quenching resulted in cyclic variability at higher turbulence levels. Despite this partial quenching, these ultra-lean flames generally resisted total extinguishment over the conditions tested.
Technical Paper

The Effect of Valve Strategy on In-Cylinder Flow and Combustion

1996-02-01
960582
This study is focused on the effect of different valve strategies on the in-cylinder flow and combustion A conventional four-valve pentroof engine was modified to enable optical access to the combustion chamber To get information on the flow, a two-component LDV system was applied The combustion was monitored by the use of cylinder pressure in a one-zone heat release model The results show that the flow in the cylinder with the valves operating in the standard configuration has an expected tumble characteristic In this case the high frequency turbulence is homogeneous and has a peak approximately 20 CAD BTDC With one valve deactivated, the flow shows a swirling pattern The turbulence is then less homogeneous but the level of turbulence is increased When the single inlet valve was phased late against the crankshaft dramatic effects on the flow resulted The late inlet valve opening introduced a low cylinder pressure before the valve opened The high pressure difference across the valve introduced a high-velocity jet into the cylinder Turbulence was increased by a factor of two by this operational mode When two inlet valves were used, a reduction of turbulence resulted from a very late inlet cam phase
Technical Paper

The Effect of Transfer Port Geometry on Scavenge Flow Velocities at High Engine Speed

1996-02-01
960366
2-D LDV measurements were performed on two different cylinder designs in a fired two-stroke engine running with wide-open throttle at 9000 rpm. The cylinders examined were one with open transfer channels and one with cup handle transfer channels. Optical access to the cylinder was achieved by removing the silencer and thereby gain optical access through the exhaust port. No addition of seeding was made, since the fuel droplets were not entirely vaporized as they entered the cylinder and thus served as seeding. Results show that the loop-scavenging effect was poor with open transfer channels, but clearly detectable with cup handle channels. The RMS-value, “turbulence”, was low close to the transfer ports in both cylinders, but increased rapidly in the middle of the cylinder. The seeding density was used to obtain information about the fuel concentration in the cylinder during scavenging.
Technical Paper

The Effect of Swirl on Spark Assisted Compression Ignition (SACI)

2007-07-23
2007-01-1856
Auto ignition with SI compression ratio can be achieved by retaining hot residuals, replacing some of the fresh charge. In this experimental work it is achieved by running with a negative valve overlap (NVO) trapping hot residuals. The experimental engine is equipped with a pneumatic valve train making it possible to change valve lift, phasing and duration, as well as running with valve deactivation. This makes it possible to start in SI mode, and then by increasing the NVO, thus raising the initial charge temperature it is possible to investigate the intermediate domain between SI and HCCI. The engine is then running in spark assisted HCCI mode, or spark assisted compression ignition (SACI) mode that is an acronym that describes the combustion on the borderline between SI and HCCI. In this study the effect of changing the in-cylinder flow pattern by increased swirl is studied. This is achieved by deactivating one of the two intake valves.
Technical Paper

The Effect of Intake Temperature on HCCI Operation Using Negative Valve Overlap

2004-03-08
2004-01-0944
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. This implementation requires only minor modifications of the standard SI engine and allows SI operation outside the operating range of HCCI. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. A heat exchanger is utilized to heat or cool the intake air, not as a means of combustion control but in order to simulate realistic variations in ambient temperature. The combustion is monitored in real time using cylinder pressure sensors. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. However, for a practical application the intake temperature will vary both geographically and from time to time.
Technical Paper

The Effect of In-Cylinder Flow and Turbulence on HCCI Operation

2002-10-21
2002-01-2864
The effect of in-cylinder flow and turbulence on HCCI operation has been experimentally studied by changing the combustion chamber geometry and the swirl ratio. Four different levels of turbulence were achieved, by altering the swirl ratio both for a high turbulent square bowl-in-piston combustion chamber and for a low turbulent disc combustion chamber. The swirl ratio was altered by using different inlet port designs. The results showed that the combustion chamber geometry plays a large role in HCCI combustion. With the same operating conditions, the combustion duration for the square bowl-in-piston combustion chamber was much longer compared to the disc combustion chamber. On the other hand, a moderate change in swirl ratio proved to have only modest effect on the combustion process. With early combustion timing, the gross indicated efficiency was higher when the square bowl-in-piston combustion chamber.
Technical Paper

Study on Combustion Chamber Geometry Effects in an HCCI Engine Using High-Speed Cycle-Resolved Chemiluminescence Imaging

2007-04-16
2007-01-0217
The aim of this study is to see how geometry generated turbulence affects the Rate of Heat Release (ROHR) in an HCCI engine. HCCI combustion is limited in load due to high peak pressures and too fast combustion. If the speed of combustion can be decreased the load range can be extended. Therefore two different combustion chamber geometries were investigated, one with a disc shape and one with a square bowl in piston. The later one provokes squish-generated gas flow into the bowl causing turbulence. The disc shaped combustion chamber was used as a reference case. Combustion duration and ROHR were studied using heat release analysis. A Scania D12 Diesel engine, converted to port injected HCCI with ethanol was used for the experiments. An engine speed of 1200 rpm was applied throughout the tests. The effect of air/fuel ratio and combustion phasing was also studied.
Technical Paper

Study of Fuel Stratification on Spark Assisted Compression Ignition (SACI) Combustion with Ethanol Using High Speed Fuel PLIF

2008-10-06
2008-01-2401
An engine can be run in Homogenous Charge Compression Ignition (HCCI) mode by applying a negative valve overlap, thus trapping hot residuals so as to achieve an auto-ignition temperature. By employing spark assistance, the engine can be operated in what is here called Spark Assisted Compression Ignition (SACI) with ethanol as fuel. The influence of fuel stratification by means of port fuel injection as well as in combination with direct injection was investigated. A high-speed multi-YAG laser system and a framing camera were utilized to capture planar laser-induced fluorescence (PLIF) images of the fuel distribution. The charge homogeneity in terms of fuel distribution was evaluated using a homogeneity index calculated from the PLIF images. The homogeneity index showed a higher stratification for increased proportions of direct-injected fuel. It was found that charge stratification could be achieved through port fuel injection in a swirling combustion system.
Technical Paper

Study of Fuel Octane Sensitivity Effects on Gasoline Partially Premixed Combustion Using Optical Diagnostics

2019-09-09
2019-24-0025
Partially premixed combustion (PPC) is a low-temperature combustion concept that could deliver higher engine efficiency, as well as lower emissions. Gasoline-like fuel compression ignition (GCI) is beneficial for air/fuel mixing process under PPC mode because of the superior auto-ignition resistance to prolong ignition delay time. In current experiments, three surrogate fuels with same research octane number (RON77) but different octane sensitivities (OS), PRF77 (S = 0), TPRF77-a (S = 3) and TPRF77-b (S = 5), are tested in a full-transparent single cylinder AVL optical compression ignition (CI) engine at low load conditions. Aiming at investigating the fuel octane sensitivity effect on engine combustion behavior as well as emissions under GCI-PPC mode, engine parameters, and emission data during combustion are compared for the test fuels with a change of injection timing.
Journal Article

Sensitivity Analysis Study on Ethanol Partially Premixed Combustion

2013-04-08
2013-01-0269
Partially Premixed Combustion (PPC) is a combustion concept which aims to provide combustion with low smoke and NOx with high thermal efficiency. Extending the ignition delay to enhance the premixing, avoiding spray-driven combustion and controlling the combustion temperature at an optimum level through use of suitable lambda and EGR levels have been recognized as key factors to achieve such a combustion. Fuels with high ignitability resistance have been proven to be a useful to extend the ignition delay. In this work pure ethanol has been used as a PPC fuel. The objective of this research was initially to investigate the required operating conditions for PPC with ethanol. Additionally, a sensitivity analysis was performed to understand how the required parameters for ethanol PPC such as lambda, EGR rate, injection pressure and inlet temperature influence the combustion in terms of controllability, stability, emissions (i.e.
Technical Paper

Quantitative Analysis of the Relation between Flame Structure and Turbulence in HCCI Combustion by Two-Dimensional Temperature Measurement

2008-04-14
2008-01-0061
The structure of HCCI (homogeneous charge compression ignition) combustion flames was quantitatively analyzed by measuring the two-dimensional gas temperature distribution using phosphor thermometry. It was found from the relation between a turbulent Reynolds number and Karlovitz number that, when compared with the flame propagation in an S.I. engine, HCCI combustion has a wider flame structure with respect to the turbulence scale. As a result of our experimentation for the influence of low temperature reaction (LTR) using two types of fuel, it was also confirmed that different types of fuel produce different histories of flame kernel structure.
Technical Paper

Optical Study on the Fuel Spray Characteristics of the Four-Consecutive-Injections Strategy Used in High-Pressure Isobaric Combustion

2020-04-14
2020-01-1129
High-pressure isobaric combustion used in the double compression expansion engine (DCEE) concept was proposed to obtain higher engine brake thermal efficiency than the conventional diesel engine. Experiments on the metal engines showed that four consecutive injections delivered by a single injector can achieve isobaric combustion. Improved understanding of the detailed fuel-air mixing with multiple consecutive injections is needed to optimize the isobaric combustion and reduce engine emissions. In this study, we explored the fuel spray characteristics of the four-consecutive-injections strategy using high-speed imaging with background illumination and fuel-tracer planar laser-induced fluorescence (PLIF) imaging in a heavy-duty optical engine under non-reactive conditions. Toluene of 2% by volume was added to the n-heptane and served as the tracer. The fourth harmonic of a 10 Hz Nd:YAG laser was applied for the excitation of toluene.
Technical Paper

Optical Diagnostics of HCCI and UNIBUS Using 2-D PLIF of OH and Formaldehyde

2005-04-11
2005-01-0175
Simultaneous OH- and formaldehyde planar-LIF measurements have been performed in an optical engine using two laser sources working on 283 and 355 nm, respectively. The measurements were performed in a light duty Diesel engine, using n-heptane as fuel, converted to single-cylinder operation and modified for optical access. It was also equipped with a direct injection common rail system as well as an EGR system. The engine was operated in both HCCI mode, using a single fuel injection, and UNIBUS (Uniform Bulky Combustion System) mode, using two injections of fuel with one of the injections at 50 CAD before TDC and the other one just before TDC. The OH and formaldehyde LIF images were compared with the heat-release calculated from the pressure-traces. Analyses of the emissions, for example NOx and HC, were also performed for the different operating conditions.
Technical Paper

Operating range in a Multi Cylinder HCCI engine using Variable Compression Ratio

2003-05-19
2003-01-1829
Homogenous Charge Compression Ignition (HCCI) is a promising part load combustion concept for future power train applications. Different approaches to achieve and control HCCI combustion are today investigated and compared, especially concerning operating range. The HCCI operating range for vehicle applications should at least cover contemporary emissions drive cycles. The operating range in terms of speed and load is investigated with a Naturally Aspirated (NA) four-stroke multi-cylinder engine with Port Fuel Injection (PFI). HCCI combustion control is achieved with Variable Compression Ratio (VCR) and inlet air preheating with exhaust heat. Both primary reference fuels and commercial gasoline are used in the tests. HCCI combustion with commercial gasoline is achieved over a load range from 0 to 3.6bar BMEP, and over a speed range from 1000 to 5000rpm. Maximum load is at 1000rpm and decreases with an approximately straight slope to zero at 5000rpm.
Technical Paper

Operating Conditions Using Spark Assisted HCCI Combustion During Combustion Mode Transfer to SI in a Multi-Cylinder VCR-HCCI Engine

2005-04-11
2005-01-0109
The Homogenous Charge Compression Ignition (HCCI) operating range in terms of speed and load does not cover contemporary driving cycles, e.g. the European driving cycle EC2000, without increased engine displacement, supercharging, or without excessive noise and high NOx emissions. Hence, the maximum achievable load with HCCI is too low for high load vehicle operation and a combustion mode transfer from HCCI to spark ignited (SI) has to be done. At some operating conditions spark assisted HCCI combustion is possible, which makes a mixed combustion mode and controlled combustion mode transfers possible. The mixed combustion region and the operating conditions are investigated in this paper from lean SI limit to pure HCCI without SI assistance. Parameters as compression ratio, inlet air pressure, inlet air temperature, and lambda are used for controlling the mixed combustion mode. A strategy for closed-loop combustion mode transfer is discussed.
Technical Paper

Modeling the Effects of Geometry Generated Turbulence on HCCI Engine Combustion

2003-03-03
2003-01-1088
The present study uses a numerical model to investigate the effects of flow turbulence on premixed iso-octane HCCI engine combustion. Different levels of in-cylinder turbulence are generated by using different piston geometries, namely a disc-shape versus a square-shape bowl. The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver. A detailed reaction mechanism is used to simulate the fuel chemistry. It is found that turbulence has significant effects on HCCI combustion. In the current engine setup, the main effect of turbulence is to affect the wall heat transfer, and hence to change the mixture temperature which, in turn, influences the ignition timing and combustion duration. The model also predicts that the combustion duration in the square bowl case is longer than that in the disc piston case which agrees with the measurements.
Technical Paper

Measurements of Turbulent Flame Speed and Integral Length Scales in a Lean Stationary Premixed Flame

1998-02-23
981050
Turbulent premixed natural gas - air flame velocities have been measured in a stationary axi-symmetric burner using LDA. The flame was stabilized by letting the flow retard toward a stagnation plate downstream of the burner exit. Turbulence was generated by letting the flow pass through a plate with drilled holes. Three different hole diameters were used, 3, 6 and 10 mm, in order to achieve different turbulent length scales. Turbulent integral length scales were measured using two-point LDA and the stretching in terms of the Karlovitz number could be estimated from these measurements. The results support previous studies indicating that stretching reduces the flame speed.
Technical Paper

Investigations of the Influence of Mixture Preparation on Cyclic Variations in a SI-Engine, Using Laser Induced Fluorescence

1995-02-01
950108
To study the effect of different injection timings on the charge inhomogeneity, planar laser-induced fluorescence (PLIF) was applied to an operating engine. Quantitative images of the fuel distribution within the engine were obtained. Since the fuel used, iso-octane, does not fluoresce, a dopant was required. Three-pentanone was found to have vapour pressure characteristics similar to those of iso-octane as well as low absorption and suitable spectral properties. A worst case estimation of the total accuracy from the PLIF images gives a maximum error of 0.03 in equivalence ratio. The results show that an early injection timing gives a higher degree of charge inhomogeneity close to the spark plug. It is also shown that charge inhomogeneity gives a more unstable engine operation. A correlation was noted between the combustion on a cycle to cycle basis and the average fuel concentration within a circular area close to the spark plug center.
X