Refine Your Search

Topic

null

Search Results

Standard

Webbing Service Life for Occupant Restraints

2021-10-01
ARP6073
This document applies to webbing used on occupant restraint systems in service on 14 CFR/CS part 23, part 25, part 27, and part 29 aircraft applications. The guidelines presented within this document are intended to be supplemental to the requirements supplied by the OEM in the CMM, ICA, or like document. In cases of conflict between this ARP and the OEM’s requirements, the requirements of the OEM shall be followed. The objective of this document is to establish practical guidelines to help operators in the determining if restraint webbing has reached the end of its service life. The recommendations contained herein are based on test data from in service restraint systems and the continued airworthiness guidelines recommended by restraint system OEMs.
Standard

TORSO RESTRAINT SYSTEMS

1986-03-01
AS8043
This Aerospace Standard specifies laboratory test procedures and minimal requirements for the manufacturer of torso restraint systems for use in small fixed wing aircraft and rotorcraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance of the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation and the cabin interior configuration.
Standard

Sensor Driven Restraint Systems

2024-01-26
WIP
AS7260
• AIRBAG COMPONENT MINIMUM PERFORMANCE REQUIREMENTS • AIRBAG INSTALLATION PERFORMANCE REQUIREMENT Current revision will only contain Part 25 and lapbelt installed airbags. Future revisions will expand to include Structural airbags, 3-point restraint airbag, pre-tensioner etc.
Standard

Restraint Systems for Civil Aircraft

2000-03-01
AS8043A
This SAE Aerospace Standard (AS) specifies laboratory test procedures and minimum requirements for the manufacturer of restraint systems for use in civil aircraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance of the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation and the cabin interior configuration. This standard specifies the requirements for Type 1, Type 2 and Type 3 restraint systems.
Standard

Restraint Systems for Civil Aircraft

2014-03-31
AS8043B
This SAE Aerospace Standard (AS) specifies laboratory test procedures and minimum requirements for the manufacturer of restraint systems for use in civil aircraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance of the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation and the cabin interior configuration. This standard specifies the requirements for Type 1, Type 2, and Type 3 restraint systems. Buckles that release automatically or through any means other than the direct action of the fingers or thumb on the buckle are beyond the scope of this standard.
Standard

Restraint Systems for Civil Aircraft

2023-05-10
AS8043C
This SAE Aerospace Standard (AS) specifies laboratory test procedures and minimum requirements for the manufacturer of restraint systems for use in civil aircraft. It is intended to establish a minimum level of quality which can be called upon by the designer of those systems. However, compliance with this standard alone may not assure adequate performance of the restraint system under normal and emergency conditions. Such performance requires consideration of factors beyond the scope of this standard, and must be demonstrated by a system evaluation procedure which includes the seat, the occupant, the specific restraint installation, and the cabin interior configuration. This standard specifies the requirements for Type 1, Type 2, and Type 3 restraint systems. Buckles that release automatically or through any means other than the direct action of the fingers or thumb on the buckle are beyond the scope of this standard.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2005-01-25
AS8049B
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR 23, 25, 27, or 29. Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2021-01-05
WIP
AS8049E
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type, see Table 1). Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2015-08-14
AS8049C
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR 23, 25, 27, or 29. Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2020-11-02
AS8049D
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type, see Table 1). Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Performance Standard for Seat Furnishings in Transport Aircraft

2021-03-22
AS6960
Seat furnishings are installed around seats and are intended to enhance passenger privacy and comfort. They may have provisions for additional occupants to be seated when the aircraft is in-flight, but would not be occupied during taxi, take-off, and landing (TTL). This Aerospace Standard (AS) establishes the minimum design, performance and qualification requirements for seat furnishings with and without upper attachments (see Figures 1 and 2) to be installed in large transport category airplanes. This standard excludes seat furnishing designs that are directly attached to the seat assembly, for which AS8049 is the applicable standard. Integrated items (desk tops, cabinets, shelves, stowage areas, closeouts, dividers, etc.) connected to seat furnishings shall comply with the requirements of this AS as part of the seat furnishings.
Standard

Methods to Evaluate Impact Characteristics of Seat Back Mounted IFE Monitors

2023-12-06
WIP
ARP6330A
This SAE Aerospace Recommended Practice (ARP) defines means to assess the effect of changes to seat back mounted IFE monitors on blunt trauma to the head and post-impact sharp edges. The assessment methods described may be used for evaluation of changes to seat back monitor delethalization (blunt trauma and post-test sharp edges) and head injury criterion (HIC) attributes (refer to ARP6448 Appendix A Items 3 and 6, respectively). Application is focused on type A-T (transport airplane) certified seat installations.
Standard

Methods for Determining the Effect of Liquid Disinfectants on Seats in Transport Aircraft

2022-03-02
ARP8463
This SAE Aerospace Recommended Practice (ARP) defines acceptable methods for determining the effect of disinfectants application to passenger and crew seating products in transport aircraft. This ARP selected a standard application process for all disinfectants in order to remove one variable from the investigation, which, at the time, was more concerned with the unknown effect of disinfectant chemicals on seat materials. The SAE Aircraft Seat Committee noted that most disinfectant manufacturers have their own application regimens to ensure the effectiveness of their product and that these differ from those defined in the ARP. Consequently, the standard application methodology defined in the ARP is not suitable for qualifying disinfectants, but is rather a standard method to compare the disinfectant’s behavior across a range of seat materials. Acceptance of individual disinfectants for specific application regimens is outside the scope of this ARP.
Standard

Method to Evaluate Passenger and Flight Attendant Seats for the Test Requirements of 14 CFR Part 25 Appendix F, Parts IV and V

2022-02-14
ARP6199B
This SAE Aerospace Recommended Practice (ARP) is only applicable to 14 CFR Part 25 transport airplane passenger and flight attendant seats. This document provides an approach for determining which parts on aircraft seats are required to meet the test requirements of 14 CFR Part 25 Appendix F, Parts IV and V. Additionally, it is recommended to use materials that meets the requirements of 14 CFR Part 25 Appendix F, Parts IV and V in applications where not required. Independent furniture installations related to seat installations are outside the scope of this document.
Standard

Magnesium Alloys in Aircraft Seats - Engineering Design and Fabrication Recommended Practices

2019-10-31
ARP6256
This document is a guide to the application of magnesium alloys to aircraft interior components including but not limited to aircraft seats. It provides background information on magnesium, its alloys and readily available forms such as extrusions and plate. It also contains guidelines for “enabling technologies” for the application of magnesium to engineering solutions including: machining, joining, forming, cutting, surface treatment, flammability issues, and designing from aluminum to magnesium.
Standard

Magnesium Alloys in Aircraft Seats - Developments in Magnesium Alloy Flammability Testing

2020-01-09
AIR6160A
This document provides informational background, rationale and a technical case to allow consideration of the removal of the magnesium alloy restriction in aircraft seat construction as contained in AS8049B. The foundation of this argument is flammability characterization work performed by the FAA at the William J. Hughes Technical Center (FAATC), Fire Safety Branch in Atlantic City, New Jersey, USA. The rationale and detailed testing results are presented along with flammability reports that have concluded that the use of specific types of magnesium alloys in aircraft seat construction does not increase the hazard level potential in the passenger cabin in a post-crash fire scenario. Further, the FAA has developed a lab scale test method, reference DOT/FAA/TC-13/52, to be used as a certification test, or method of compliance (MOC) to allow acceptability of the use of magnesium in the governing TSO-C127 and TSO-C39C.
Standard

Magnesium Alloys in Aircraft Seats - Developments in Magnesium Alloy Flammability Testing

2014-05-16
AIR6160
This document provides informational background, rationale and a technical case to allow consideration of the removal of the magnesium alloy restriction in aircraft seat construction as contained in AS8049B. The foundation of this argument is flammability characterization work performed by the FAA at the William J. Hughes Technical Center (FAATC), Fire Safety Branch in Atlantic City, New Jersey, USA. The rationale and detailed testing results are presented along with flammability reports that have concluded that the use of specific types of magnesium alloys in aircraft seat construction does not increase the hazard level potential in the passenger cabin in a post-crash fire scenario. Further, the FAA has developed a lab scale test method, reference DOT/FAA/TC-13/52, to be used as a certification test, or method of compliance (MOC) to allow acceptability of the use of magnesium in the governing TSO-C127 and TSO-C39C.
X