Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Rollover Sensor Test Modeling

2007-04-16
2007-01-0686
A computational model of a mid-size sport utility vehicle was developed using MADYMO. The model includes a detailed description of the suspension system and tire characteristics that incorporated the Delft-Tyre magic formula description. The model was correlated by simulating a vehicle suspension kinematics and compliance test. The correlated model was then used to simulate a J-turn vehicle dynamics test maneuver, a roll and non-roll ditch test, corkscrew ramp and a lateral trip test, the results of which are presented in this paper. The results indicate that MADYMO is able to reasonably predict the vehicle and occupant responses in these types of applications and is potentially suited as a tool to help setup a suite of vehicle configurations and test conditions for rollover sensor testing. A suspension system sensitivity study is presented for the laterally tripped non-roll event.
Technical Paper

Use of Photogrammetry in Extracting 3D Structural Deformation/Dummy Occupant Movement Time History During Vehicle Crashes

2005-04-11
2005-01-0740
The ability to extract and evaluate the time history of structural deformations or crush during vehicle crashes represents a significant challenge to automotive safety researchers. Current methods are limited by the use of electro-mechanical devices such as string pots and/or linear variable displacement transducers (LVDT). Typically, one end of the transducer must be mounted to a point on the structure that will remain un-deformed during the event; the other end is then attached to the point on the structure where the deformation is to be measured. This approach measures the change in distance between these two points and is unable to resolve any movement into its respective X, Y, or Z directions. Also, the accuracy of electro-mechanical transducers is limited by their dynamic response to crash conditions. The photogrammetry technique has been used successfully in a wide variety of applications including aerial surveying, civil engineering and documentation of traffic accidents.
Technical Paper

Tibia Bending: Strength and Response

1985-12-01
851728
Unembalmed human tibias were subjected to static and dynamic three-point bending tests using the Wayne State Translational Impactor. Simple supports potted to the bone near the proximal and distal epiphyses were attached to force transducers and load was applied at midspan by a 32-kg impactor that had a rigid 25-mm diameter cylindrical contact surface. Loads were applied through the normal flesh covering the bone, and were directed from the anterior to posterior or from lateral to medial. Each bone was loaded once and sustained fracture at or near mid-span. Peak bending moments, impact speeds and load-deflection data are presented. Data regarding cross-sectional properties adjacent to the fracture site and mineral content of the specimens are included, along with a study of the correlations of strength with these various parameters.
Technical Paper

Thoracic Injury Mechanisms and Biomechanical Responses in Lateral Velocity Pulse Impacts

1999-10-10
99SC04
The purpose of this study is to help understand the thoracic response and injury mechanisms in high-energy, limited-stroke, lateral velocity pulse impacts to the human chest wall. To impart such impacts, a linear impactor was developed which had a limited stroke and minimally decreased velocity during impact. The peak impact velocity was 5.6 ± 0.3 m/s. A series of BioSID and cadaver tests were conducted to measure biomechanical response and injury data. The conflicting effects of padding on increased deflection and decreased acceleration were demonstrated in tests with BioSID and cadavers. The results of tests conducted on six cadavers were used to test several proposed injury criteria for side impact. Linear regression was used to correlate each injury criterion to the number of rib fractures. This test methodology captured and supported a contrasting trend of increased chest deflection and decreased TTI when padding was introduced.
Technical Paper

The Influence of Surrogate Blood Vessels on the Impact Response of a Physical Model of the Brain

2004-11-01
2004-22-0012
Cerebral blood vessels are an integral part of the brain and may play a role in the response of the brain to impact. The purpose of this study was to quantify the effects of surrogate vessels on the deformation patterns of a physical model of the brain under various impact conditions. Silicone gel and tubing were used as surrogates for brain tissue and blood vessels, respectively. Two aluminum cylinders representing a coronal section of the brain were constructed. One cylinder was filled with silicone gel only, and the other was filled with silicone gel and silicone tubing arranged in the radial direction in the peripheral region. An array of markers was embedded in the gel in both cylinders to facilitate strain calculation via high-speed video analysis. Both cylinders were simultaneously subjected to a combination of linear and angular acceleration using a two-segment pendulum.
Technical Paper

The Effect of Variable Load Energy Absorbers on the Biodynamic Response of Cadavers

1975-02-01
751168
Several types of energy absorbers were tested on a sled simulating a crash deceleration using instrumented, seated erect dummies and cadavers. The energy absorbers were mechanical load limiting devices which attenuated the impact by yielding or tearing of metal. Their principal effects were to reduce the peak deceleration sustained by the occupant with the expected reduction in restraint forces. Constant load level energy absorbers were found to be unattractive because they can easily “bottom out” causing forces and body strains which could be much higher than those without absorbers. Head accelerations were significantly reduced by the energy absorbers as well as some body strain. However, spinal strains in the cadaver were not significantly reduced. They appear to be not only a function of the peak deceleration level but also of the duration of the pulse.
Technical Paper

Study on the Key Preload Performance Parameters of an Active Reversible Preload Seatbelt (ARPS)

2018-04-03
2018-01-1175
In order to provide an improved countermeasure for occupant protection, a new type of active reversible preload seatbelt (ARPS) is presented in this paper. The ARPS is capable of protecting occupants by reducing injuries during frontal collisions. ARPS retracts seatbelt webbing by activating an electric motor attached to the seatbelt retractor. FCW (Forward Collision Warning) and LDW (Lane Departure Warning) provide signals as a trigger to activate the electric motor to retract the seatbelt webbing, thus making the occupant restraint system work more effectively in a crash. It also helps reduce occupant’s forward movement during impact process via braking. Four important factors such as preload force, preload velocity and the length and timing of webbing retraction play influential roles in performance of the ARPS. This paper focuses on studying preload performance of ARPS under various test conditions to investigate effects of the aforementioned factors.
Technical Paper

Strain Rate Dependent Foam - Constituitive Modeling and Applications

1997-02-24
971076
Many foams exhibit significant strain rate dependency in their mechanical responses. To characterize these foams, a strain rate dependent constitutive model is formulated and implemented in an explicit dynamic finite element code developed at FORD. The constitutive model is developed in conjunction with a Lagrangian eight node solid element with twenty four degrees of freedom. The constitutive model has been used to model foams in a number crash analysis problems. Results obtained from the analyses are compared to the experimental data. Evidently, numerical results show excellent agreement with the experimental data.
Technical Paper

Simulated Automotive Side Impact on the Isolated Human Pelvis: Phase I: Development of a Containment Device Phase II: Analysis of Pubic Symphysis Motion and Overall Pelvic Compression

1997-11-12
973321
PHASE I - A containment fixture was designed and manufactured to stabilize and preload isolated human pelves within a DYNATUP™ Drop Tower during simulated automotive side impact. The fixture was utilized during thirteen parametric tests aimed at determining boundary conditions which simulate inertial properties of whole cadavers during impacts of the isolated human pelvis. The resulting pelvic injuries (i.e., fractures) ranged from no fracture to complex acetabular fracture. These injuries were sustained with drop masses of 14.2-25.2 kg and impact velocities of 4.1-6.4 m/s. Peak force, measured during impact, ranged from 2.0-8.2 kN. PHASE II - Phrase II studies used nine additional human pelves to explored pelvis stiffness and pubis symphysis mobility under lateral impact to the greater trochanter. The containment device designed and tested in Phase I was utilized to stabilize and compressively preload the specimens during impact.
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Selection of Vehicle Prototypes for Rollover Sensor Calibration Tests using CAE-DOE

2002-07-09
2002-01-2057
CAE has played a key role in development of the rollover safety technology by reducing the required number of prototypes. CAE-led Design Of Experiments (DOE) studies have helped in developing the process to minimize the number of CAE runs and to optimize use of the prototypes. This paper demonstrates the use of CAE/DOE for the design and optimization of rollover vehicle prototypes and also investigates effects of various factors in the selection of vehicle configuration for rollover sensor calibration testing. The process described herein has been successfully applied to vehicle programs. Modeling and analysis guidelines are also presented for CAE engineers to help in optimizing vehicle prototypes at program level.
Technical Paper

Safety Performance of Asymmetric Windshields

1978-02-01
780900
A comparative study of the safety performance of asymmetric and standard HPR windshields was conducted. The effect of increased interlayer thickness was also quantified. There were four different types of asymmetric windshields which had inner layer thicknesses of 0.8 to 1.5 mm and interlayer thicknesses of 0.76 and 1.14 mm. The experimental program consisted of both full scale sled tests and headform drop tests. A total of 127 vehicular impacts were carried out using a modified Volkswagen Rabbit. The test subject was a 50th percentile Fart 572 anthropomorphic test device. The asymmetric windshields were found to have a lower lacerative potential than that of the standard windshield. The best TLI value of 5.2 was provided by a 0.8 - 0.76 mm windshield at 60 km/h. That for the standard windshield was 7.7 at the same speed. All HIC values were less than 1,000 at 48 km/h.
Technical Paper

SID Response Data in a Side Impact Sled Test Series

1992-02-01
920350
Heidelberg-type side impact sled tests were conducted using SID side impact dummies. These tests were run under similar conditions to a series of cadaveric sled tests funded by the Centers for Disease Control in the same lab. Tests included 6.7 and 9 m/s (15 and 20 mph) unpadded and 9 m/s padded tests. The following padding was used at the thorax: ARSAN, ARCEL, ARPAK, ARPRO, DYTHERM, 103 and 159 kPa (15 and 23 psi) crush strength paper honeycomb, and an expanded polystyrene. In all padded tests the dummy Thoracic Trauma Index, TTI(d) was below the value of 85 set by federal rulemaking (49 CFR, Part 571 et al., 1990). In contrast, cadavers in 9 m/s sled tests did not tolerate ARSAN 601 (MAIS 5) and 23 psi (159 kPa) paper honeycomb (MAIS 5), and 20 psi (138 kPa) Verticel™ honeycomb (MAIS 4), but tolerated 15 psi (103 kPa) paper honeycomb (average thoracic MAIS 2.3 in six tests).
Technical Paper

Regional Tolerance to Impact Acceleration

1985-04-01
850852
Human tolerance data have been acquired gradually over the past 25 years and are available for several body regions. There is now sufficient information to design restraint systems which can prevent serious injuries to the user and which have low injury-causing potential. This paper reviews recent research on injury mechanisms and injury tolerance. Most of the research was aimed at solving problems in automotive safety systems. Specific tolerance data for the following body regions are presented: head, chest, spine and lower extremities.
Technical Paper

Regional Tolerance of the Shoulder, Thorax, Abdomen and Pelvis to Padding in Side Impact

1993-03-01
930435
Lateral impact testing has been performed on the shoulder, thorax, abdomen and pelvis of human cadavers by several investigators. The impacts have either been whole body impacts in sled tests or pendulum type impacts to the separate regions. Based on the forces produced in these tests and the accompanying injury, initial recommendations can be made on force-tolerance and padding tolerance to the various regions of the human body in side impact. The pelvis has the highest force tolerance, followed by the shoulder, abdomen and thorax. Padding crush strength tolerance based on these forces and estimated contact areas are presented. This information is of practical importance to engineers who design door interior trim for side impact safety.
Journal Article

Practical Versus RSM-Based MDO in Vehicle Body Design

2012-04-16
2012-01-0098
Multidisciplinary Design Optimization (MDO) is of great significance in the lean design of vehicles. The present work is concerned with the objective of cross-functional optimization (i.e. MDO) of automotive body. For simplicity, the main goal adopted here is minimizing the weight of the body meeting NVH and crash safety targets. The stated goal can be achieved following either of two different ways: classic response surface method (RSM) and practical MDO methodology espoused recently. Even though RSM seems to be able to find a design point which satisfies the constraints, the problem is with the time associated with running such CAE algorithms that can provide a single optimal solution for multi-disciplinary areas such as NVH and crash safety.
Technical Paper

Performance and Mechanical Properties of Various Padding Materials Used in Cadaveric Side Impact Sled Tests

1992-02-01
920354
Various types of padding have been used in side impact sled tests with cadavers. This paper presents a summary of performance of the padding used in NHTSA and WSU/CDC sled tests, and a summary of material properties of padding used in cadaveric sled tests. The purpose of this paper is to provide information on padding performance in cadavers, rather than optimum padding performance in dummies.
Technical Paper

Optimization Design of FoamIPillar for Head Impact Protection Using Design of Experiment Approach

1997-04-08
971543
This paper presents a method to obtain improved foam/pillar structural designs to help enhance occupant interior impact protection. Energy absorbing foams are used in this study with their thickness and crush strength being selected as primary design variables for optimization. The response surface techniques in the design of experiment are used in the optimization process. Head impact analyses are conducted by a CAE model with explicit, nonlinear, dynamic finite element code LS-DYNA3D. A baseline model is developed and verified by comparing the simulation results with the experimental data. Based on this model, the anticipated effects of stiffness of the pillar structure and the trim on the Head Injury Criterion (HIC) results are also assessed. The optimization approach in this study provides a comprehensive consideration of the factors which affect the HIC value.
Technical Paper

On the Development of a New Design Methodology for Vehicle Crashworthiness based on Data Mining Theory

2016-04-05
2016-01-1524
This paper represents the development of a new design methodology based on data mining theory for decision making in vehicle crashworthy components (or parts) development. The new methodology allows exploring the big crash simulation dataset to discover the underlying complicated relationships between vehicle crash responses and design variables at multi-levels, and deriving design rules based on the whole vehicle safety requirements to make decisions towards the component and sub-component level design. The method to be developed will resolve the issue of existing design approaches for vehicle crashworthiness, i.e. limited information exploring capability from big datasets, which may hamper the decision making and lead to a nonoptimal design. A preliminary design case study is presented to demonstrate the performance of the new method. This method will have direct impacts on improving vehicle safety design and can readily be applied to other complex systems.
Technical Paper

Numerical Investigations of Interactions between the Knee-Thigh-Hip Complex with Vehicle Interior Structures

2005-11-09
2005-22-0005
Although biomechanical studies on the knee-thigh-hip (KTH) complex have been extensive, interactions between the KTH and various vehicular interior design parameters in frontal automotive crashes for newer models have not been reported in the open literature to the best of our knowledge. A 3D finite element (FE) model of a 50th percentile male KTH complex, which includes explicit representations of the iliac wing, acetabulum, pubic rami, sacrum, articular cartilage, femoral head, femoral neck, femoral condyles, patella, and patella tendon, has been developed to simulate injuries such as fracture of the patella, femoral neck, acetabulum, and pubic rami of the KTH complex. Model results compared favorably against regional component test data including a three-point bending test of the femur, axial loading of the isolated knee-patella, axial loading of the KTH complex, axial loading of the femoral head, and lateral loading of the isolated pelvis.
X