Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

The influence of PAH contamination of Lubricating Oil on Diesel Particulate PAH Emissions

1989-02-01
890825
The influence of contamination of lubricating oil on the emissions of total particulate, particulate polycyclic aromatic hydrocarbons (PAH) and unburnt fuel and gaseous emissions have been investigated for a modified Perkins 4.236 D.I. diesel engine. The emissions during fuel firing and motoring in the absence of fuel are compared. The results showed that the exhaust particulate during both firing and motoring were not affected by lubricating oil contamination. Emission of PAH during fuel firing and motoring increase with oil contamination which in turn reflects the build up of PAH with oil age. Some of the particulate PAH are biologically active. The contribution of oil derived PAH increase with age. Comparison of the gaseous emissions during fuel firing and during motoring also showed an increase in UHC with age of lubricating oil.
Technical Paper

The Role of Lubricating Oil in Diesel Particulate and Particulate PAH Emissions

1987-11-01
872084
The role of lubricating oil in total particulate emmissions and in terms of polycyclic aromatic compounds (PAC) associated with the solvent organic fraction (SOF) of the particulate are investigated. Analysis of unused lubricating oil shows negligible concentrations of PAC. Used lubricating oil from a modified Perkins 4.236 Diesel engine, showed significant concentrations of PAC had accumulated in the oil in the form of PAC from unburnt fuel. Analysis of the oil was by gas chromatography using simultaneous parallel triple detection, allowing analysis of polycyclic aromatic hydrocarbons (PAH), nitrogen containing PAH (PANH) and sulphur containing PAH (PASH). Motoring the engine in the absence of fuel enabled the contribution of lubricating oil to the exhaust particulate and particulate PAC emission to be determined.
Technical Paper

The Influence of an On Line Oil Recycler on Oil Quality with Oil Age from a Low Emission DI Diesel Engine

2003-10-27
2003-01-3226
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infrared heater, to remove water and light diesel fractions in the oil. The impact of this oil recycler with 1 micron fine bypass filter on oil quality was investigated over a 72 hour oil age. Comparisons tests were undertaken without and with the recycler on a Euro 2 Perkins Phaser 180Ti 6 cylinder 6 litre turbo-charged inter-cooled DI diesel engine. The tests were carried out at 2000rpm and 100kW with 473 Nm load. A stop start test cycle was used with a cold start each time and a typical test period of 2 hours. The results showed that the oil quality in this low emission engine test was extremely good. The on line recycler achieved improvements in the oil quality. With the recycler, the carbon accumulation rate in the oil was reduced by 78%. The carbon removal rate by the recycler was 0.40 g/hr. The wear metals in the oil were significantly reduced.
Technical Paper

The Influence of an On Line Oil Recycler on Oil Quality from a Bus in Service Using Synthetic Oil

2001-05-07
2001-01-1969
A method of cleaning lubricating oil on line was investigated using a one micron bypass particulate filter followed by an infra-red heater, to remove water, dissolved gases and light diesel fractions in the oil. The impact of this oil recycler on oil quality was studied using synthetic oil in an on-road bus test. The bus was of Euro-1 emissions standard and equipped with a Cummins 6 cylinder 8.3 litre turbo-charged inter-cooled DI engine. Comparisons tests were undertaken with and without the oil recycler for about 28,000 miles. Oil samples were analysed about every 2000 miles. The results showed that the on line oil recycler achieved significant improvements in the oil quality. With the recycler, the TBN depletion rate was reduced by 52%, the TAN increase rate was reduced by 27% and the carbon accumulation rate in the oil was reduced by 42%. The fuel dilution was reduced by the recycler.
Technical Paper

The Influence of an On Line Oil Recycler on Emissions from a Low Emission DI Diesel Engine as a Function of Oil Age

2001-09-24
2001-01-3617
A method of cleaning lubricating oil on line was investigated using a fine 1μm bypass particulate filter followed by a 150°C infra-red heater, to remove water and light diesel fractions in the oil. The impact of this oil recycler on diesel particulate and gaseous emissions was investigated over a 72 hour oil age. Comparison tests were undertaken without and with the recycler on a Euro 2 Perkins Phaser 180Ti, 6-cylinder, 6-litre, turbo-charged inter-cooled DI diesel engine fitted with an oxidation catalyst. Emissions were sampled from both upstream and downstream of the catalyst about every 10 hours. The tests were carried out at 2000rpm and 100kW with 473 Nm load. A stop start test cycle was used with a cold start each time and a typical test period of 2 hours. The results showed that this engine had extremely low particulate emissions and was well inside the Euro 2 emissions limits.
Technical Paper

The Influence of an On Line Heated Lubricating Oil Recycler on Emissions from an IDI Passenger Car Diesel as a Function of Oil Age

2000-03-06
2000-01-0232
A method of cleaning diesel engine lubricating oil on-line was investigated using a bypass fine particulate filter followed by an infra-red heater to remove water vapour and light diesel fractions in the oil. The impact of this oil recycler on the gaseous and particulate emissions was investigated over a 300 hour oil age period. A Ford 1.8 litre IDI passenger car diesel engine was used with engine out emission sampled every 15-20 hours. The tests were carried out at 2500rpm (52% of the maximum speed) and 12.3 kW with 47 Nm load (43% of the maximum load and 29% of the maximum power). The EGR level at this condition was 15%. A stop start test cycle was used with a cold start each time and a typical test period of 2-3 hours. The results showed that the recycler had its greatest influence on emissions for fresh oil when there was a large reduction in particulate emissions due mainly to large reductions in the ash, carbon and unburned lubricating oil fractions.
Technical Paper

The Influence of Lubricating Oil Age on Oil Quality and Emissions from IDI Passenger Car Diesels

1999-03-01
1999-01-1135
Two Ford IDI passenger car diesel engines, 1.6 and 1.8 litres, were tested over a 100 hour lube oil ageing period with engine out emission samples every 15 hours. The 1.6 litre engine was tested with 5% EGR and the 1.8 litre engine with 15% EGR. Comparison was also made with previous work using an older Petter AA1 engine. The three engines had different dependencies of particulate emissions on the lube oil age. The 1.6 litre engine increased the particulates from 1 to 2.5 g/kg of fuel, whereas the 1.8 litre engine first decreased the particulate emissions from 3 to 1 g/kg over 50 hours of oil age and then they increased to 2 g/kg at 100 hours. This was similar to the previous work on the Petter AA1 engine, where the emissions first decreased and then increased as the oil aged. For the 1.8 litre engine the lube oil fraction of the VOF was high with fresh oil and decreased with time for the first 50 hours and then remained steady.
Technical Paper

The Effect of Ambient Temperature on Cold Start Urban Traffic Emissions for a Real World SI Car

2004-10-25
2004-01-2903
The influence of ambient temperature on exhaust emissions for an instrumented Euro 1 SI car was determined. A real world test cycle was used, based on an urban drive cycle that was similar to the ECE urban drive cycle. It was based on four laps of a street circuit and an emissions sample bag was taken for each lap. The bag for the first lap was for the cold start emissions. An in-vehicle direct exhaust dual bag sampling technique was used to simultaneously collect exhaust samples upstream and downstream of the three-way catalyst (TWC). The cold start tests were conducted over a year, with ambient temperatures ranging from - 2°C to 32°C. The exhaust system was instrumented with thermocouples so that the catalyst light off temperature could be determined. The results showed that CO emissions for the cold start were reduced by a factor of 8 downstream of catalyst when ambient temperature rose from -2°C to 32°C, the corresponding hydrocarbon emissions were reduced by a factor of 4.
Technical Paper

The Composition of Spark Ignition Engine Steady State Particulate Emissions

1999-03-01
1999-01-1143
The contribution of spark ignition engine particulate emissions to total particulate emissions and the published data on SI engine emission levels are reviewed. There is a wide spread of published data and the worst SI engines would exceed the future diesel particulate emissions regulations. However, most modern SI engines with a catalyst will easily meet the future diesel particulate emissions regulations, although their particulates emissions are a significant fraction of these regulations. Steady state lambda 1 results are presented for a Ford Zetec SI engine at conditions representative of the urban driving cycle at 5 and 10kW power output and also at WOT. The impact of a cold start and EGR at the two low power conditions was also investigated. The particulate emissions for petrol were of the order of 5% of the future (2005) diesel emissions regulations and were approximately 20 mg/kg fuel (about 2 mg/mile or 1.3 mg/km).
Technical Paper

The Aging of Lubricating Oil, The Influence of Unburnt Fuel and Particulate SOF Contamination

1987-11-01
872085
The role of lubricating oil as a sink for polycyclic aromatic compounds (PAC) and alkanes derived from unburnt fuel is described for two different oils used in two different DI diesel engines. The diesel engines used were, an older technology Petter AV1 single cylinder mine pumping engine and a Perkins 4.236 current technology engine. Analysis of the oil was by gas chromatography using simultaneous parallel triple detection, allowing analysis of hydrocarbons and nitrogen and sulphur containing compounds. Analysis of unused lubricating oil showed negligible concentrations of PAC and low molecular weight alkanes (< C20). The oil from each engine was analysed periodically during use and showed a rapid and significant accumulation of hydrocarbons which reached significant concentrations after only 10 hours use. The older technology engine showed a much higher accumulation rate.
Technical Paper

Study of Emission and Combustion Characteristics of RME B100 Biodiesel from a Heavy Duty DI Diesel Engine

2007-01-23
2007-01-0074
A rapeseed methyl ester biodiesel RMEB100 was tested on a heavy duty DI diesel engine under steady state conditions. The combustion performance and exhaust emissions were measured and compared to a standard petroleum derived diesel fuel. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, with emission compliance of EURO 2, fitted with an oxidation catalyst. The exhaust samples were taken both upstream and downstream of the catalyst. Particulates were collected and analysed for VOF, carbon and ash. A MEXA7100 gas analysis system was used for legislated gas analysis such as CO, CO2, NOx and total hydrocarbons. A FTIR analysis system was deployed for gaseous hydrocarbon speciation, which is capable of speciating up to 65 species. The results showed a significant reduction in total particulate mass, particulate VOF, CO, THC and aldehydes when using RMEB100.
Technical Paper

Reduction of Exhaust Emissions by a Synthetic Lubricating Oil with Higher Viscosity Grade and Optimized Additive Package for a Heavy Duty DI Diesel Engine Test

2008-10-06
2008-01-2489
A 10W-50 G4 synthetic lubricating oil (EULUBE oil) was tested on a heavy duty DI diesel engine under two steady state conditions. The exhaust emissions were measured and compared to a 10W-30 CF semi-synthetic lubricating oil. The EULUBE oil contained the friction reduction additive to improve the fuel economy. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, with emission compliance of EURO 2, fitted with an oxidation catalyst. The exhaust samples were taken both upstream and downstream of the catalyst. Gaseous and particulates emissions were measured. Particulate size distribution was measured using ELPI and SMPS. The particulate samples were analysed for VOF, carbon and ash. A MEXA7100 gas analysis system was used for legislated gas analysis such as CO, CO2, NOx and total hydrocarbons. The results showed a significant reduction by synthetic lubricating oil in gaseous hydrocarbon emissions, total particulate mass, particulate carbon and ash.
Technical Paper

Real World Diesel Engine Greenhouse Gas Emissions for Diesel Fuel and B100

2013-04-08
2013-01-1514
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport using a probe vehicle: CO₂, N₂O and CH₄ emissions as a function temperature. It should be highlighted that methane is a greenhouse gas that similarly to carbon dioxide contributes to global warming and climate change. An oxidation catalyst was used to investigate CO₂, N₂O and CH₄ GHG emissions over a real-world driving cycle that included urban congested traffic and extra-urban driving conditions. The results were determined under hot start conditions, but in congested traffic the catalyst cooled below its light-off temperature and this resulted in considerable N₂O emissions as the oxidation catalyst temperature was in the N₂O formation band. This showed higher N₂O during hot start than for diesel fuel and B100 were compared. The B100 fuel was Fatty Acid Methyl Ester (FAME), derived from waste cooking oil, which was mainly RME.
Technical Paper

Real World Cold Start Emissions from a Diesel Vehicle

2012-04-16
2012-01-1075
This study uses on-board measurement systems to analyze emissions from a diesel engine vehicle during the cold start period. An in-vehicle FTIR (Fourier Transform Inferred) spectrometer and a Horiba on-board measurement system (OBS-1300) were installed on a EURO3 emission-compliant 1.8 TDCi diesel van, in order to measure the emissions. Both regulated and non-regulated emissions were measured, along with an analysis of the NO/NO₂ split. A VBOX GPS system was used to log coordinates and road speed for driving parameters and emission analysis. Thermal couples were installed along the exhaust system to measure the temperatures of exhaust gases during cold start. The real-time fuel consumption was measured. The study also looks at the influence of velocity on emissions of hydrocarbons (HCs) and NOx. The cold start period of an SI-engine-powered vehicle, was typically around 200 seconds in urban driving conditions.
Technical Paper

Rape Seed Oil B100 Diesel Engine Particulate Emissions: The Influence of Intake Oxygen on Particle Size Distribution

2012-04-16
2012-01-0435
Pure rape seed oil (RSO), as coded BO100 (BO: Bio-Oil) to distinguish from biodiesel was investigated for a range of intake oxygen levels from 21 to 24%. RSO can have deposit problems in both the fuel injector and piston crown and elevated intake oxygen levels potentially could control these by promoting their oxidation. Increased intake oxygen elevates the peak temperature and this promotes the oxidation of soot and volatile organic compounds. The effect of this on particle mass and on the particle size distribution was investigated using a 6-cylinder 6-liter Perkins Phaser Euro 2 DI diesel engine. The tests were conducted at 47 kW brake power output at 1500 rpm. The particle size distribution was determined from the engine-out exhaust sample using a Dekati microdilution system and nano-SMPS analyzer. The results showed that for air RSO had higher particle mass than diesel and that this mass decreased as the oxygen level was increased.
Technical Paper

Proceedings of Real Driving Emission (RDE) Measurement in China

2018-04-03
2018-01-0653
Light-duty China-6, which is among the most stringent vehicle exhaust emission standards globally, mandates the monitoring and reporting of real driving emissions (RDE) from July, 2023. In the process of regulation promulgation and verification, more than 300 RDE tests have been performed on over 50 China-5 and China-6 certified models. This technical paper endeavors to summarize the experience of RDE practice in China, and discuss the impacts of some boundary conditions (including vehicle dynamic parameters, data processing methods, hybrid propulsion and testing altitude) on the result of RDE measurement. In general, gasoline passenger cars confront few challenges to meet the upcoming RDE NOx requirement, but some China-5 certified samples, even powered by naturally-aspirated engines may have PN issues. PN emissions from some GDI-hybrid powertrain systems also need further reduction to meet China-6 RDE requirements.
Technical Paper

Particle Emissions and Size Distribution across the DPF from a Modern Diesel Engine Using Pure and Blended GTL Fuels

2020-09-15
2020-01-2059
A Gas to liquid (GTL) fuel was investigated for its combustion and emission performance in an IVECO EURO5 DI diesel engine with a DOC (Diesel Oxidation Catalyst) and DPF (Diesel Particle Filter) installed. The composition of the GTL fuel was analyzed by GC-MS (gas chromatography-mass spectrometry) and showed the carbon distribution of 8-20. Selected physical properties such as density and distillation were measured. The GTL fuel was blended with standard fossil diesel fuel by ratios of diesel/GTL: 100/0, 70/30, 50/50, 30/70 and 0/100. The engine was equipped with a pressure transducer and crank angle encoder in one of its cylinders. The properties of ignition delay and maximum in-cylinder pressure were studied as a function of fraction of the GTL fuel. Particle emissions were measured using DMS500 particle size instrument at both upstream (engine out) and downstream of the DPF (DPF out) for particle number concentrations and size distribution from 5 nm to 1000 nm.
Technical Paper

Oil Quality with Oil Age in an IDI Diesel Passenger Car Using an On Line Lubricating Oil Recycler Under Real World Driving

2001-05-07
2001-01-1898
A method of cleaning lubricating oil on line was investigated using a fine 1 micron bypass particulate filter, followed by an infra-red heater to remove water and light diesel fractions in the oil. A Ford 1.8 litre IDI diesel passenger car was investigated under real world driving conditions. Comparison was made with the oil quality without the recycler. All the tests were carried out on the same vehicle over 7000 miles with and without the recycler. The results showed that the on line oil recycler cleaning system reduced the rate of reduction of TBN and the rate of increase of TAN by 54% and 50% respectively. The reduction in the rate of carbon accumulation in the oil was 42%. There was also a reduction in fuel dilution. All the wear metals in the oil were greatly reduced by the recycler, the iron was reduced by 76%, the lead was reduced by 85% and the aluminum was totally removed.
Technical Paper

Oil Quality in Diesel Engines With On Line Oil Cleaning Using a Heated Lubricating Oil Recycler

1999-03-01
1999-01-1139
SYNOPSIS A method of cleaning the oil on line was investigated using a bypass fine particulate filter followed by an infra red heater to remove water and light diesel fractions in the oil. This was tested on a range of on road vehicles and a Ford 1.8 litre IDI passenger car engine on a test bed. Comparison was made with the oil quality on the same vehicles and engines without the on-line recycler. Test times were from 200 to 1500 hours of oil ageing and some of the tests showed that the oil quality was still good after 4 times the normal oil life. The results showed that the on line oil recycler cleaning system reduced the rate of fall of the TBN and rate of increase of the TAN. There was a very significant reduction in the soot in oil and the fuel dilution. There was also a consistent reduction in all the wear metals apart from copper and a decrease in the rate of reduction of oil additives. There was also measured on the Ford IDI engine a 5% reduced fuel consumption.
Journal Article

Investigation of Combustion and Emission Performance of Hydrogenated Vegetable Oil (HVO) Diesel

2017-10-08
2017-01-2400
Hydrogenated Vegetable Oil (HVO) diesel fuels have the potential to provide a reduced carbon footprint for diesel engines and reduce exhaust emissions. Therefore, it is a strong candidate for transport and diesel powered machines including electricity generators and other off-road machines. In this research, a waste cooking oil derived HVO diesel was investigated for its combustion and emission performance including ignition delays, size segregated particulate number emissions and gaseous emissions. The results were compared to the standard petroleum diesel. A EURO5 emission compliant three litre, direct injection, intercooled IVECO diesel engine equipped with EGR was used which has a maximum power output of 96kW. The engine was equipped with an integrated DOC and DPF aftertreatment system. Both the upstream and downstream of the aftertreatment emissions were measured. The tests were conducted at different RPM and loads at steady state conditions.
X