Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

X-Ray Measurements of High Pressure Diesel Sprays

2001-03-05
2001-01-0531
A quantitative and time-resolved technique has been developed to probe the fuel distribution very near the nozzle of a high-pressure diesel injector. This technique uses the absorption of synchrotron x-rays to measure the fuel mass with good time and position resolution. The penetrating power of x-rays allows measurements that are difficult with other techniques, such as quantitative measurements of the mass and penetration measurements of the trailing edge of the spray. Line-of-sight measurements were used to determine the fuel density as a function of time. The high time resolution and quantitative nature of the measurement also permit an accurate measure of the instantaneous mass flow rate through the nozzle.
Technical Paper

Visualization of the Qualitative Fuel Distribution and Mixture Formation Inside a Transparent GDI Engine with 2D Mie and LIEF Techniques and Comparison to Quantitative Measurements of the Air/Fuel Ratio with 1D Raman Spectroscopy

2000-06-19
2000-01-1793
Mie-Scattering and laser induced exciplex fluorescence (LIEF) were used to visualize the distribution of liquid fuel and fuel vapor inside an optical accessible one-cylinder research engine with gasoline direct injection (GDI). Using a tracer which was developed especially for the environments of gasoline combustion engines, LIEF enables an extensive separation between liquid and vapor phase and delivers a signal proportional to the equivalence ratio. Simultaneous images of LIEF and Mie scattering proof the high quality of the phase separation using this tracer concept. The mixture formation process will be shown exemplary at one operation point with homogeneous load and another with stratified load. First results of determining the air/fuel ratio by means of linear Raman spectroscopy will be presented and compared with the two-dimensional qualitative distribution of the fuel vapor (LIEF).
Technical Paper

Visualization of Direct-Injection Gasoline Spray and Wall-impingement Inside a Motoring Engine

1998-10-19
982702
Two-dimensional pulse-laser Mie scattering visualization of the direct-injection gasoline fuel sprays and wall impingement processes was carried out inside a single-cylinder optically accessible engine under motoring condition. The injectors have been first characterized inside a pressurized chamber using identical technique, as well as high-speed microscopic visualization and phase Doppler measurement techniques. The effects of injector cone angle, location, and injection timings on the wall impingement processes were investigated. It was found that the fuel vaporization is not complete at the constant engine speed tested. Fuel spray droplets were observed to disperse wider in the motored engine when compared with an isothermal quiescent ambient conditions. The extent of wall-impingement varies significantly with the injector mounting position and spray cone angle; however, its effect can be reduced to some extent by optimizing the injection timing.
Technical Paper

Visualization and Analysis of the Impingement Processes of a Narrow-Cone DI Gasoline Spray

2001-05-07
2001-01-2023
The direct injection spray-wall interactions were investigated experimentally using high-speed laser-sheet imaging, shadowgraphy, wetted footprints and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, at three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall.
Technical Paper

Vapor-Phase Structures of Diesel-Type Fuel Sprays: An Experimental Analysis

1998-10-19
982543
The vapor phase of an evaporating spray from a heavy-duty Diesel common-rail injection system has been investigated with an optical diagnostic technique based on linear Raman scattering, which has been extended to the application in fuel sprays. One-dimensional spatially resolved Raman measurements of the air/fuel-ratio have been performed in the spray region with high local and temporal resolution in an injection chamber at an air pressure of 4.5 MPa and at a temperature of 450°C. The influence of different parameters, such as rail pressure, nozzle geometry and injection duration on the temporal evolution of the local air/fuel-ratio in the vapor phase has been studied quantitatively, and results from a selected spatial location are compared. Furthermore, the effect of physical/chemical fuel properties on the evaporation dynamics has been investigated by performing measurements with two different fuels.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

Time-Resolved Measurements in Transient Port Injector Sprays

1995-02-01
950509
A global characterization of the spray distribution of various current and development types of automotive fuel injectors was obtained. Axial and radial measurement of droplet sizes, velocities and volume fluxes were made with a phase Doppler particle analyzer (PDPA) for a transient port injector spray in quiescent atmospheric conditions. Time-resolved measurements involving the time-of-arrival of each droplet associated with its size and velocity components were also acquired. Additionally, the liquid sprays emanating from various types of port fuel injectors were visualized, through planar laser induced fluorescence (PLIF) technique, at different time instants. Such detailed study provides an improved understanding of the temporal or unsteady behavior of port injector spray.
Technical Paper

The Spray Characteristics of Automotive Port Fuel Injection-A Critical Reviews

1995-02-01
950506
The requirement of meeting the emission standards for low emission vehicles (LEV) and ultra low emission vehicles (ULEV) has resulted in a more stringent examination of all elements of the automotive internal combustion engine that contribute to emission formation. The fuel system, as one of the key elements, is the subject of renewed and expanded research in an effort to understand and optimize the important parameters. Only through such enhanced understanding of the basic processes of fuel injection, metering, atomization, targeting, pulse-to-pulse variability and induction of fuel under cold, normal and elevated temperature conditions can the very low emissions of today's vehicles be further reduced to ULEV values.
Technical Paper

Spray Targeting Inside a Production-Type Intake Port of a 4-Valve Gasoline Engine

1996-02-01
960115
An experimental study was carried out to investigate the spray behavior inside engine intake ports. Production-type intake ports of four-valve gasoline engines were modified for the optical access at directions. The global spray formation process was visualized through laser Mie scattering technique. The spray breakup and atomization processes, spray targeting and fuel dispersing characteristics were investigated as a function of elapse time after fuel injection. The spray interaction with the port wall and port air flow were examined with different types of port fuel injectors including single-stream, multi-stream, and air-shrouded ones. The spray targeting and dispersing characteristics inside two different intake ports were examined. It was found that spray targeting and fuel dispersion inside the intake port are strongly dependent on the spray characteristics, as a result of different injector designs and injector installation positions.
Technical Paper

Spray Formation of High Pressure Swirl Gasoline Injectors Investigated by Two-Dimensional Mie and LIEF Techniques

1999-03-01
1999-01-0498
Two-dimensional Mie and LIEF techniques were applied to investigate the spray formation of a high pressure gasoline swirl injector in a constant volume chamber. The results obtained provide information on the propagation of liquid fuel and fuel vapor for different fuel pressures and ambient conditions. Spray parameters like tip penetration, cone angles and two new defined parameters describing the radial fuel distribution were used to quantify the fuel distributions measured. Simultaneous detection of liquid and vapor fuel was applied to study the influence of ambient temperature, injector temperature and ambient pressure on the evaporating spray.
Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Technical Paper

Self-Ignition Calculation of Diesel Spray

2012-04-16
2012-01-1262
This paper describes a computer simulation of Diesel spray formation and the locations of self-ignition nuclei. The spray is divided into small elementary volumes in which the amounts of fuel and fuel vapours, air, mean, maximum and minimum fuel droplet diameter are calculated, as well as their number. The total air-fuel and air-fuel vapour ratios are calculated for each elementary volume. The paper introduces a new criterion for determining self-ignition nuclei, based on assumptions that the strongest self-ignition probability lies in those elementary volumes containing the stoichiometric air ratio, where the fuel is evaporated or the fuel droplet diameter is equal to or lower than 0.0065 mm. The most efficient combustion in regard to consumption and emission will be in those elementary volumes containing stoichiometric air ratio, and fuel droplets with the lowest mean diameters. Measurements of injection and combustion were carried out in a transparent research engine.
Technical Paper

Quantitative Measurements of Direct-Injection Gasoline Fuel Sprays in Near-Nozzle Region Using Synchrotron X-Ray

2001-03-05
2001-01-1293
A quantitative and time-resolved technique has been developed to probe the dense spray structure of direct-injection (DI) gasoline sprays in near-nozzle region. This technique uses the line-of-sight absorption of monochromatic x-rays from a synchrotron source to measure the fuel mass with time resolution better than 1 μs. The small scattering cross-section of fuel at x-rays regime allows direct measurements of spray structure that are difficult with most visible-light optical techniques. Appropriate models were developed to determine the fuel density as a function of time.
Journal Article

Pilot Injection Ignition Properties Under Low-Temperature, Dilute In-Cylinder Conditions

2013-10-14
2013-01-2531
Measurements of ignition behavior, homogeneous reactor simulations employing detailed kinetics, and quantitative in-cylinder imaging of fuel-air distributions are used to delineate the impact of temperature, dilution, pilot injection mass, and injection pressure on the pilot ignition process. For dilute, low-temperature conditions characterized by a lengthy ignition delay, pilot ignition is impeded by the formation of excessively lean mixture. Under these conditions, smaller pilot mass or higher injection pressures further lengthen the pilot ignition delay. Similarly, excessively rich mixtures formed under relatively short ignition delay conditions typical of conventional diesel combustion will also prolong the ignition delay. In this latter case, smaller pilot mass or higher injection pressures will shorten the ignition delay. The minimum charge temperature required to effect a robust pilot ignition event is strongly dependent on charge O2 concentration.
Technical Paper

Numerical Prediction and Validation of Fuel Spray Behavior in a Gasoline Direct-Injection Engine

2001-09-24
2001-01-3668
Analysis of flow field and charge distribution in a gasoline direct-injection (GDI) engine is performed by a modified version of the KIVA code. A particle-based spray model is proposed to simulate a swirl-type hollow-cone spray in a GDI engine. Spray droplets are assumed to be fully atomized and introduced at the sheet breakup locations as determined by experimental correlations and energy conservation. The effects of the fuel injection parameters such as spray cone angle and ambient pressure are examined for different injectors and injection conditions. Results show reasonable agreement with the measurements for penetration, dispersion, global shape, droplet velocity and size distribution by Phase Doppler Particle Anemometry(PDPA) in a constant-volume chamber. The test engine is a 4-stroke 4-valve optically accessible single-cylinder engine with a pent-roof head and tumble ports.
Technical Paper

New Integrated “O.P.E.R.A.S.” Strategies for Low Emissions in HSDI Diesel Engines

2003-03-03
2003-01-0261
Integrated control strategies for the O.P.E.R.A.S. (Optimization of injection Pressure, EGR ratio, injection Retard or Advance and Swirl ratio) are demonstrated. The strategies are based on an investigation of combustion and emissions in a small bore, high speed, direct injection diesel engine. The engine is equipped with a common rail injection system and is tested under simulated turbocharged engine conditions at two loads and speeds that represent two key operating points in a medium size HEV vehicle. A new phenomenological model is developed for the fuel distribution in the combustion chamber and the fractions that are injected prior to the development of the flame, injected in the flame or deposited on the walls. The investigation covered the effect of the different operating parameters on the fuel distribution, combustion and engine-out emissions.
Technical Paper

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging

2010-04-12
2010-01-0877
By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models.
Technical Paper

Microscopic Characterization of Diesel Sprays at VCO Nozzle Exit

1998-10-19
982542
A long-distance microscope with pulse-laser as optical shutter up to 25kHz was used to magnify the diesel spray at the nozzle hole vicinity onto 35-mm photographic film through a still or a high-speed drum camera. The injectors examined are high-pressure valve-covered-orifice (VCO) nozzles, from unit injector and common rail injection systems. For comparison, a mini-sac injector from a hydraulic unit injector is also investigated. A phase-Doppler particle analyzer (PDPA) system with an external digital clock was also used to measure the droplet size, velocity and time of arrival relative to the start of the injection event. The visualization results provide very interesting and dynamic information on spray structure, showing spray angle variations, primary breakup processes, and spray asymmetry not observed using conventional macroscopic visualization techniques.
Technical Paper

Investigation of Spray Penetration and Fuel Distribution Inside the Piston Bowl of a 1.9 l DI Diesel Engine Using Two-Dimensional Mie Scattering

1992-10-01
922204
Using the two-dimensional Mie scattering technique measurements have been performed inside the piston bowl of a four cylinder VOLKSWAGEN 1.9 l DI Diesel engine. The engine was prepared for providing optical access. A new evaluation procedure was developed which allows additional information on the spray penetration in direction of the piston axis. Quantitative results have been obtained on the jet tip penetration and the spray cone angles of the jets. From liquid fuel distributions inside a laser sheet 5 mm below the nozzle an appearence frequency distribution (AFD) has been calculated, which gives a quantitative statistical information on the liquid fuel distribution inside the light sheet plane with high local and temporal resolution. By means of the AFD the jet penetration in direction of the jet axes can be reconstructed in good approximation. The information provided by the AFD is also very suitable for the validation of results obtained by computer codes.
Journal Article

Investigation of Fuel Effects on Spray Atomization and Evaporation Studied for a Multi-hole DISI Injector with a Late Injection Timing

2011-08-30
2011-01-1982
The influence of fuel composition on sprays was studied in an injection chamber at DISI conditions with late injection timing. Fuels with high, mid and low volatility (n-hexane, n-heptane, n-decane) and a 3-component mixture with similar fuel properties like gasoline were investigated. The injection conditions were chosen to model suppressed or rapid evaporation. Mie scattering imaging and phase Doppler anemometry were used to investigate the liquid spray structure. A spray model was set up applying the CFD-Code OpenFOAM. The atomization was found to be different for n-decane that showed a smaller average droplet size due to viscosity dependence of injected mass. And for evaporating conditions, a stratification of the vapor components in the 3-component fuel spray was observed.
X