Refine Your Search

Topic

Author

Search Results

Technical Paper

Visualization of Direct-Injection Gasoline Spray and Wall-impingement Inside a Motoring Engine

1998-10-19
982702
Two-dimensional pulse-laser Mie scattering visualization of the direct-injection gasoline fuel sprays and wall impingement processes was carried out inside a single-cylinder optically accessible engine under motoring condition. The injectors have been first characterized inside a pressurized chamber using identical technique, as well as high-speed microscopic visualization and phase Doppler measurement techniques. The effects of injector cone angle, location, and injection timings on the wall impingement processes were investigated. It was found that the fuel vaporization is not complete at the constant engine speed tested. Fuel spray droplets were observed to disperse wider in the motored engine when compared with an isothermal quiescent ambient conditions. The extent of wall-impingement varies significantly with the injector mounting position and spray cone angle; however, its effect can be reduced to some extent by optimizing the injection timing.
Technical Paper

Visualization and Analysis of the Impingement Processes of a Narrow-Cone DI Gasoline Spray

2001-05-07
2001-01-2023
The direct injection spray-wall interactions were investigated experimentally using high-speed laser-sheet imaging, shadowgraphy, wetted footprints and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, at three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall.
Technical Paper

Understanding of Intake Cam Phasing Effects on the Induction and Fuel-Air Mixing in a DISI Engine

2004-06-08
2004-01-1947
Variable Cam Timing (VCT) has been proven to be a very effective method in PFI (Port Fuel Injection) engines for improved fuel economy and combustion stability, and reduced emissions. In DISI (Direct Injection Spark Ignition) engines, VCT is applied in both stratified-charge and homogeneous charge operating modes. In stratified-charge mode, VCT is used to reduce NOx emission and improve combustion stability. In homogeneous charge mode, the function of VCT is similar to that in PFI engines. In DISI engine, however, the VCT also affects the available fuel-air mixing time. This paper focuses on VCT effects on the induction process and the fuel-air mixing homogeneity in a DISI engine. The detailed induction process with large exhaust-intake valve overlap has been investigated with CFD modeling. Seven characteristic sub-processes during the induction have been identified. The associated mechanism for each sub-process is also investigated.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

Transient Simulation of DGI Engine Injector with Needle Movement

2002-10-21
2002-01-2663
Utilization of direct injection systems is one of the most promising technologies for fuel economy improvement for SI engine powered passenger cars. Engine performance is essentially influenced by the characteristics of the injection equipment. This paper will present CFD analyses of a swirl type GDI injector carried out with the Multiphase Module of AVL's FIRE/SWIFT CFD code. The simulations considered three phases (liquid fuel, fuel vapor, air) and mesh movement. Thus the transient behavior of the injector can be observed. The flow phenomena known from measurement and shown by previous simulation work [2, 7, 10, 11] were reproduced. In particular the simulations shown in this paper could explain the cause for the outstanding atomization characteristics of the swirl type injector, which are caused by cavitation in the nozzle hole.
Technical Paper

Time-Resolved Measurements in Transient Port Injector Sprays

1995-02-01
950509
A global characterization of the spray distribution of various current and development types of automotive fuel injectors was obtained. Axial and radial measurement of droplet sizes, velocities and volume fluxes were made with a phase Doppler particle analyzer (PDPA) for a transient port injector spray in quiescent atmospheric conditions. Time-resolved measurements involving the time-of-arrival of each droplet associated with its size and velocity components were also acquired. Additionally, the liquid sprays emanating from various types of port fuel injectors were visualized, through planar laser induced fluorescence (PLIF) technique, at different time instants. Such detailed study provides an improved understanding of the temporal or unsteady behavior of port injector spray.
Technical Paper

Spray Targeting Inside a Production-Type Intake Port of a 4-Valve Gasoline Engine

1996-02-01
960115
An experimental study was carried out to investigate the spray behavior inside engine intake ports. Production-type intake ports of four-valve gasoline engines were modified for the optical access at directions. The global spray formation process was visualized through laser Mie scattering technique. The spray breakup and atomization processes, spray targeting and fuel dispersing characteristics were investigated as a function of elapse time after fuel injection. The spray interaction with the port wall and port air flow were examined with different types of port fuel injectors including single-stream, multi-stream, and air-shrouded ones. The spray targeting and dispersing characteristics inside two different intake ports were examined. It was found that spray targeting and fuel dispersion inside the intake port are strongly dependent on the spray characteristics, as a result of different injector designs and injector installation positions.
Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Technical Paper

Spectral Analysis and Chemiluminescence Imaging of Hydrogen Addition to HSDI Diesel Combustion Under Conventional and Low-Temperature Conditions

2004-10-25
2004-01-2919
Late-injection low-temperature diesel combustion is found to further reduce NOx and soot simultaneously. The combustion phenomena and detail chemical kinetics are studied with high speed spray/combustion images and time-resolved spectroscopy analysis in a rapid compression machine (RCM) with a small bowl combustion chamber. High swirl and high EGR condition can be achieved in the RCM; variable injection pressure and injection timing is supplied by the high-pressure common-rail fuel injection system. Effect of small amount of premix hydrogen gas on diesel combustion is also studied in the RCM. A hydrogen injector is located in the upstream of air inlet for delivery small amount and premixed hydrogen gas into cylinder just before the compression stroke. The ignition delay is studied both from the pressure curves and the chemiluminescence images.
Technical Paper

Quantitative Measurements of Direct-Injection Gasoline Fuel Sprays in Near-Nozzle Region Using Synchrotron X-Ray

2001-03-05
2001-01-1293
A quantitative and time-resolved technique has been developed to probe the dense spray structure of direct-injection (DI) gasoline sprays in near-nozzle region. This technique uses the line-of-sight absorption of monochromatic x-rays from a synchrotron source to measure the fuel mass with time resolution better than 1 μs. The small scattering cross-section of fuel at x-rays regime allows direct measurements of spray structure that are difficult with most visible-light optical techniques. Appropriate models were developed to determine the fuel density as a function of time.
Technical Paper

Quantitative Imaging of the Fuel Concentration in a SI Engine with Laser Rayleigh Scattering

1993-10-01
932641
Quantitative imaging of the fuel concentration distribution was made in the combustion chamber of a propane-fueled spark ignition (SI) engine with the employment of laser-sheet-induced Rayleigh scattering technique for realizing the remote, nonintrusive and highly space- and time-resolved measurement. The original engine was modified to introduce YAG laser-induced sheet light into the combustion chamber and the scattered light was captured by a CCD camera fitted with a gated double-micro- channel plate image intensifier. The measurements were done at the crank angle of 270°ATDC in the combustion chamber of the engine motored at 200rpm with an air fuel ratio of 13 for various injection timing, injection direction and intake flow. The results show that with an appropriate matching of fuel injection timing, injection direction and intake flow, a stratified distribution of the fuel concentration can be realized.
Technical Paper

PLIF Measurements of the Cyclic Variation of Mixture Concentration in a SI Engine

1994-03-01
940988
Planar laser-induced fluorescence (PLIF) technique was employed to perform the quantitative measurements of the cyclic variation of mixture concentration in the combustion chamber of a spark ignition (SI) engine. Nitrogen dioxide was used as the fluorescence tracer to simulate the fuel vapor. A Nd:YAG laser operated at its second harmonic wavelength was employed as the light source. The original engine was modified to introduce laser sheet light into the combustion chamber and the induced fluorescence was captured by a CCD camera fitted with a gated image intensifier. The measurements were done at the engine crank angles of 180° ∼ 300° ATDC with the engine speeds of 200 ∼ 400 rpm and the injection timings of -70 °, 50° and 100° ATDC. A theoretical analysis was made to describe the cyclically varying characteristics of the mixture concentration.
Technical Paper

Numerical Study on Controllability of Natural Gas and Diesel Dual Fuel Combustion in a Heavy-Duty Engine

2017-03-28
2017-01-0756
Natural gas is a promising alternative fuel for internal combustion engines due to its rich reserves and low price, as well as good physical and chemical properties. Its low carbon structure and high octane number are beneficial for CO2 reduction and knock mitigation, respectively. Diesel and natural gas dual fuel combustion is a viable pathway to utilize natural gas in diesel engines. To achieve high efficiency and low emission combustion in a practical diesel engine over a wide range of operating conditions, understanding the performance responses to engine system parameter variations is needed. The controllability of two combustion strategies, diesel pilot ignition (DPI) and single injection reactivity controlled compression ignition (RCCI), were evaluated using the multi-dimension CFD simulation in this paper.
Technical Paper

Numerical Study of Ultra Low Solidity Airfoil Diffuser in an Automotive Turbocharger Compressor

2009-04-20
2009-01-1470
For the application of advanced clean combustion technologies, such as diesel HCCI/LTC, a compressor with high efficiency over a broad operation range is required to supply a high amount of EGR with minimum pumping loss. A compressor with high pitch of vaneless diffuser would substantially improve the flow range of the compressor, but it is at the cost of compressor efficiency, especially at low mass flow area where most of the city driving cycles resides. In present study, an ultra low solidity compressor vane diffuser was numerically investigated. It is well known that the flow leaving the impeller is highly distorted, unsteady and turbulent, especially at relative low mass flow rate and near the shroud side of the compressor. A conventional vaned diffuser with high stagger angle could help to improve the performance of the compressor at low end. However, adding diffuser vane to a compressor typically restricts the flow range at high end.
Technical Paper

Numerical Prediction and Validation of Fuel Spray Behavior in a Gasoline Direct-Injection Engine

2001-09-24
2001-01-3668
Analysis of flow field and charge distribution in a gasoline direct-injection (GDI) engine is performed by a modified version of the KIVA code. A particle-based spray model is proposed to simulate a swirl-type hollow-cone spray in a GDI engine. Spray droplets are assumed to be fully atomized and introduced at the sheet breakup locations as determined by experimental correlations and energy conservation. The effects of the fuel injection parameters such as spray cone angle and ambient pressure are examined for different injectors and injection conditions. Results show reasonable agreement with the measurements for penetration, dispersion, global shape, droplet velocity and size distribution by Phase Doppler Particle Anemometry(PDPA) in a constant-volume chamber. The test engine is a 4-stroke 4-valve optically accessible single-cylinder engine with a pent-roof head and tumble ports.
Technical Paper

New Integrated “O.P.E.R.A.S.” Strategies for Low Emissions in HSDI Diesel Engines

2003-03-03
2003-01-0261
Integrated control strategies for the O.P.E.R.A.S. (Optimization of injection Pressure, EGR ratio, injection Retard or Advance and Swirl ratio) are demonstrated. The strategies are based on an investigation of combustion and emissions in a small bore, high speed, direct injection diesel engine. The engine is equipped with a common rail injection system and is tested under simulated turbocharged engine conditions at two loads and speeds that represent two key operating points in a medium size HEV vehicle. A new phenomenological model is developed for the fuel distribution in the combustion chamber and the fractions that are injected prior to the development of the flame, injected in the flame or deposited on the walls. The investigation covered the effect of the different operating parameters on the fuel distribution, combustion and engine-out emissions.
Technical Paper

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging

2010-04-12
2010-01-0877
By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models.
Technical Paper

Modeling the Effects of EGR and Injection Pressure on Emissions in a High-Speed Direct-Injection Diesel Engine

2001-03-05
2001-01-1004
Experimental data is used in conjunction with multi-dimensional modeling in a modified version of the KIVA-3V code to characterize the emissions behavior of a high-speed, direct-injection diesel engine. Injection pressure and EGR are varied across a range of typical small-bore diesel operating conditions and the resulting soot-NOx tradeoff is analyzed. Good agreement is obtained between experimental and modeling trends; the HSDI engine shows increasing soot and decreasing NOx with higher EGR and lower injection pressure. The model also indicates that most of the NOx is formed in the region where the bulk of the initial heat release first takes place, both for zero and high EGR cases. The mechanism of NOx reduction with high EGR is shown to be primarily through a decrease in thermal NOx formation rate.
Technical Paper

Modeling of DISI Engine Sprays with Comparison to Experimental In-Cylinder Spray Images

2001-09-24
2001-01-3667
In modeling of engine fuel-air mixing, it is desired to be able to predict fuel spray atomization under different injection and ambient conditions. In this work, a previously developed sheet atomization model was studied for this purpose. For sprays from a pressure-swirl injector, it is assumed in the model that the fuel flows out the injector forming a conical liquid film (sheet), and the sprays are formed due to the disintegration of the sheet. Modified formulations are proposed to estimate sheet parameters including sheet thickness and velocity at the nozzle exit. It was found that the fuel flow rate of a swirl injector satisfied the correlation well. Computations of correlation well. Computations of the sprays injected in an engine with a side-mounted injector were performed for conditions that duplicated a set of experiments performed in an optical engine. The computed results were compared with the spray images obtained from the optical engine using elastic (Mie) scattering.
Technical Paper

Modeling Analysis of Thermal Efficiency Improvement up to 45% of a Turbocharged Gasoline Engine

2022-10-28
2022-01-7051
Numerical analysis of thermal efficiency improvement up to 45% of an 1.8-liter turbocharged direct-injection (DI) gasoline engine was conducted in this study in response to the need of improving vehicle fuel economy. 1D thermodynamics simulations and 3D computational fluid dynamics (CFD) modeling were carried out to investigate the technical approaches for improving engine thermal efficiency. Effects of various technologies on the improvement in the engine performance were evaluated, and then the technical routes to achieve 41% and 45% brake thermal efficiency were summarized, respectively. It is concluded that 41% thermal efficiency can be reached under stoichiometric combustion conditions, while it is expected lean burn technology is needed for the target of 45% thermal efficiency. The effects of high tumble intake flow on accelerating burning speed and of high compression ratio on intensifying knocking were analyzed.
X