Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Use of Ceramic Components in Sliding Systems for High-Pressure Gasoline Fuel Injection Pumps

2010-04-12
2010-01-0600
Spray-guided gasoline direct injection demonstrates great potential to reduce both fuel consumption and pollutant emissions. However, conventional materials used in high-pressure pumps wear severely under fuel injection pressures above 20 MPa as the lubricity and viscosity of gasoline are very low. The use of ceramic components promises to overcome these difficulties and to exploit the full benefits of spray-guided GDI-engines. As part of the Collaborative Research Centre “High performance sliding and friction systems based on advanced ceramics” at Karlsruhe Institute of Technology, a single-piston high-pressure gasoline pump operating at up to 50 MPa has been designed. It consists of 2 fuel-lubricated sliding systems (piston/cylinder and cam/sliding shoe) that are built with ceramic parts. The pump is equipped with force, pressure and temperature sensors in order to assess the behaviour of several material pairs.
Technical Paper

The BPI Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in Spark Ignited Engines

2004-03-08
2004-01-0035
Spark ignited engines with direct injection (DISI) in fuel stratified mode promise an increase in efficiency mainly due to reduced pumping losses at part load. However, the need for expensive lean NOx catalysts may reduce this advantage. Therefore, a Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. It is characterised by a combination of a prechamber spark plug and a piston bowl. An important feature of the concept is its dual injection strategy. A pre injection in the inlet stroke produces a homogeneous lean mixture with an air fuel ratio of λ = 1.5 to λ = 1.7. A second injection with a small quantity of fuel is directed towards the piston bowl during the compression stroke. The enriched air fuel mixture of the piston bowl is transported by the pressure difference between main combustion chamber and prechamber into the prechamber.
Technical Paper

Temperature Measurement and NO Determination in SI Engines Using Optical Fiber Sensors

1996-10-01
961922
This paper presents a special optical fiber technique which allows to measure temperatures in SI engines using the emission bands or respectively emission lines of the temperature radiation of diatomic molecules. The measurement technique enables the detection of average temperature in a small volume element. These temperatures are used to determine the local NO concentrations using the extended Zeldovich-mechanism. First, theoretical background of both temperature and NO-determination and measurement technique including optical fiber sensors are described. Finally, the temperature and NO dependence versus crank angle are presented and discussed at different combustion chamber locations for different engine operating conditions.
Technical Paper

Spectroscopic Measurements in Small Two-Stroke SI Engines

2009-11-03
2009-32-0030
This paper demonstrates the potential of optical sensors in the combustion chamber of a small two-stroke SI engine to detect conditions that hinder an optimal combustion process using emission bands and/or emission lines. The primary focus is on the spectroscopic examination of the combustion radiation emissions cycle-by-cycle. For this purpose, spark-ignition type combustion events, as well as the influence of both the air-fuel-ratio and the fuel type, are investigated on a crank angle resolved basis. Furthermore, an assessment of the radiation emissions of the OH, CH and C2 radicals is made. As a next step, the calculation of a temperature profile inside the combustion chamber is attempted by means of the line-emission-method regarding the thermally excited alkaline metals sodium and potassium. These data enable recognition of diffusion combustion and the detection of inadequate mixture quality.
Journal Article

Soot and NOx Reduction by Spatially Separated Pilot Injection

2012-04-16
2012-01-1159
To this day, Diesel engines with direct injection are the most efficient internal combustion engines for passenger cars. The major challenge of these engines with a conventional Diesel combustion process is the high level of particulate matter and nitrogen oxide emissions. Diesel engines in passenger cars normally use a pilot injection strategy for NVH reasons, which influences the engine-out soot emissions negatively. The Diesel fuel of the pilot injection is still burning when the main injection takes place, so, liquid components of the main injection interact with the flame of the pilot injection. The time for mixture formation decreases and the combustion takes place under locally very rich conditions which results in high levels of soot formation. For this reason new emission level restrictions cannot be reached without modern exhaust gas aftertreatment systems, which are quite expensive and can have an impact on the gas exchange.
Technical Paper

Quasi-Dimensional Combustion Simulation of a Two- Stroke Engine

2006-11-13
2006-32-0062
The paper presents an application of a quasi-dimensional (QD) model for the combustion simulation in a two-stroke engine. In contrast to 0D-models the QD-models provide an opportunity to describe the development of the combustion process in dependence on the actual thermodynamic state in the combustion chamber. The QD-models enable to couple the flame propagation with the combustion chamber geometry and with the flow field. An extensive sensitivity analysis is performed for the QD-model by varying the parameters of the QD-model itself and of the operating points. The constructed QD-model is examined under various conditions (engine speed, the delivery ratio and the air to fuel ratio) and shows a good agreement with experimental results.
Technical Paper

Principal Component Analysis and Study of Port-Induced Swirl Structures in a Light-Duty Optical Diesel Engine

2015-04-14
2015-01-1696
In this work computational and experimental approaches are combined to characterize in-cylinder flow structures and local flow field properties during operation of the Sandia 1.9L light-duty optical Diesel engine. A full computational model of the single-cylinder research engine was used that considers the complete intake and exhaust runners and plenums, as well as the adjustable throttling devices used in the experiments to obtain different swirl ratios. The in-cylinder flow predictions were validated against an extensive set of planar PIV measurements at different vertical locations in the combustion chamber for different swirl ratio configurations. Principal Component Analysis was used to characterize precession, tilting and eccentricity, and regional averages of the in-cylinder turbulence properties in the squish region and the piston bowl.
Journal Article

Premature Flame Initiation in a Turbocharged DISI Engine - Numerical and Experimental Investigations

2013-04-08
2013-01-0252
This paper presents the results of experimental and numerical investigations on pre-ignition in a series-production turbocharged DISI engine. Previous studies led to the conclusion that pre-ignition can be triggered by auto-ignition of oil droplets generated in the combustion chamber. Analysis of more recent experiments shows that a modification of the engine operation parameters that promotes spray/lubricant interaction also increases pre-ignition frequency, while modifications that enhance the speed of chemical reactions (thereby favoring auto-ignition) have little or no influence. The experimental and numerical findings can be explained if we assume the existence of a substance (originating from lubricant/fuel interaction) that displays extremely short ignition delay times.
Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

Parallel Load Balancing Strategies for Mesh-Independent Spray Vaporization and Collision Models

2021-04-06
2021-01-0412
Appropriate spray modeling in multidimensional simulations of diesel engines is well known to affect the overall accuracy of the results. More and more accurate models are being developed to deal with drop dynamics, breakup, collisions, and vaporization/multiphase processes; the latter ones being the most computationally demanding. In fact, in parallel calculations, the droplets occupy a physical region of the in-cylinder domain, which is generally very different than the topology-driven finite-volume mesh decomposition. This makes the CPU decomposition of the spray cloud severely uneven when many CPUs are employed, yielding poor parallel performance of the spray computation. Furthermore, mesh-independent models such as collision calculations require checking of each possible droplet pair, which leads to a practically intractable O(np2/2) computational cost, np being the total number of droplets in the spray cloud, and additional overhead for parallel communications.
Technical Paper

Optimization of Injection of Pure Rape Seed Oil in modern Diesel Engines with Direct-Injection

2007-07-23
2007-01-2031
Natural vegetable oil like rape seed oil is a potential substitute for regular fuel for diesel engines. Compared to other biogen fuels like rape seed methyl ester (RME), pure rape seed oil is neutral towards groundwater and it needs considerably less energy and additives for production. Different physical properties of rape seed oil compared to Diesel fuel are the reason why conventional Diesel engines can hardly be used satisfactorily with rape seed oil without being modified. Poor exhaust-emission behavior is caused by the incomplete combustion. Due to poor spray atomization of vegetable oil, an increased fuel entrainment in the lubricating oil, carbonization in the combustion chamber and deposits at injectors and valves are further drawbacks of injection systems designed for conventional diesel fuel. The preheating of this fuel can solve some problems.
Technical Paper

Optical Investigations on a Mitsubishi GDI-Engine in the Driving Mode

1999-03-01
1999-01-0504
Optical investigations using optical fibres were carried out in the first available direct injection SI-engine, the Mitsubishi GDI, in the driving mode. The optical access to the combustion chamber was realized by 8 optical sensors evenly distributed in a ring on the ground electrode of the standard spark plug. All investigations, steady state (constant load and velocity) and unsteady state (engine starts), show, that there is preferred flame propagation to the intake valves, caused by a reverse tumble in-cylinder flow. As the inflammation depends on thermodynamic conditions, flow characteristics and the actual air/fuel-ratio at the spark plug, the optical sensors can be used to describe the quality of stratification.
Technical Paper

Optical Investigations of the Vaporization Behaviors of Isooctane and an Optical, Non-fluorescing Multicomponent Fuel in a Spark Ignition Direct Injection Engine

2010-10-25
2010-01-2271
Investigations of the fuel injection processes in a spark ignition direct injection engine have been performed for two different fuels. The goal of this research was to determine the differences between isooctane, which is often used as an alternative to gasoline for optical engine investigations, and a special, non-fluorescing, full boiling range multicomponent fuel. The apparent vaporization characteristics of isooctane and the multicomponent fuel were examined in homogeneous operating mode with direct injection during the intake stroke. To this end, simultaneous Mie scattering and planar laser induced fluorescence imaging experiments were performed in a transparent research engine. Both fuels were mixed with 3-Pentanone as a fluorescence tracer. A frequency-quadrupled Nd:YAG laser was used as both the fluorescent excitation source and the light scattering source.
Technical Paper

Optical Fiber Technique as a Tool to Improve Combustion Efficiency

1990-10-01
902138
A multi-optical fiber technique is presented, which enables one to detect the flame propagation during non-knocking and knocking conditions in real production engines. The measurement technique is appropriate to detect knock onset locations and to describe the propagation of knocking reaction fronts. With this knowledge, the combustion chamber shape can be optimized, leading to a better knock resistance and higher combustion efficiencies. Results of flame propagation under non-knocking and knocking engine operating conditions are presented. In addition, correlations between knock onset locations and areas in which knock damage occurs are shown for different engines. Presented are the effects of combustion chamber modifications on the combustion efficiency, based on the analysis of the optical fiber measurements.
Technical Paper

Non-Equilibrium Law-of-the-Wall Modeling for Improved Heat Transfer Predictions: Model Development and Validation

2022-03-29
2022-01-0405
A one-dimensional, non-equilibrium, compressible law of the wall model is proposed to increase the accuracy of heat transfer predictions from computational fluid dynamics (CFD) simulations of internal combustion engine flows on engineering grids. Our 1D model solves the transient turbulent Navier-Stokes equations for mass, momentum, energy and turbulence under the thin-layer assumption, using a finite-difference spatial scheme and a high-order implicit time integration method. A new algebraic eddy-viscosity closure, derived from the Han-Reitz equilibrium law of the wall, with enhanced Prandtl number sensitivity and compressibility effects, was developed for optimal performance. Several eddy viscosity sub-models were tested for turbulence closure, including the two-equation k-epsilon and k-omega, which gave insufficient performance.
Technical Paper

Limitations of Sector Mesh Geometry and Initial Conditions to Model Flow and Mixture Formation in Direct-Injection Diesel Engines

2019-04-02
2019-01-0204
Sector mesh modeling is the dominant computational approach for combustion system design optimization. The aim of this work is to quantify the errors descending from the sector mesh approach through three geometric modeling approaches to an optical diesel engine. A full engine geometry mesh is created, including valves and intake and exhaust ports and runners, and a full-cycle flow simulation is performed until fired TDC. Next, an axisymmetric sector cylinder mesh is initialized with homogeneous bulk in-cylinder initial conditions initialized from the full-cycle simulation. Finally, a 360-degree azimuthal mesh of the cylinder is initialized with flow and thermodynamics fields at IVC mapped from the full engine geometry using a conservative interpolation approach. A study of the in-cylinder flow features until TDC showed that the geometric features on the cylinder head (valve tilt and protrusion into the combustion chamber, valve recesses) have a large impact on flow complexity.
Technical Paper

Ion-Current Measurement in Small Two-Stroke SI Engines

2008-09-09
2008-32-0037
The cyclic changes of the cylinder pressure are mainly influenced by the primary inflammation phase, which in turn depends on the local air/fuel ratio and the residual-gas fraction at the spark plug. The ion-current measurement technique is based on the conductivity of the mixture during the internal combustion. It is therefore possible to use the signal for combustion diagnostics when using the spark plug as a sensor. This article demonstrates the potential of ion sensing at the spark plug and in the combustion chamber to detect sources of interference which prevent an optimal combustion process. Comparing the ion signals of consecutive combustion cycles delivers explanations of phenomena that could not yet be sufficiently characterized by cylinder-pressure indication. The results allow new fundamental approaches to the optimization of the combustion process.
Technical Paper

Ion Current Measurement in Diesel Engines

2004-10-25
2004-01-2922
Contemporary diesel engines are high-tech power plants that provide high torques at very good levels of efficiency. By means of modern injecting-systems such as Common-Rail Injection, combustion noise and emissions could be influenced positively as well. Diesel engine are therefore used increasingly in top-range and sports cars. Today's production ECUs have no or only very low feedback regarding the process in the combustion chamber. As long as this data is missing, the design of the maps in the ECU can only be a compromise, since production tolerances and aging processes have to be considered in advance. Disturbances in the combustion process may not be detected at all. If more knowledge about the course of combustion is provided, especially the start of combustion (SOC), various operating parameters, such as the pilot injection quantity or the beginning of current feed to the injector, could be adjusted more precisely and individually for every cylinder.
Journal Article

Investigations on the Heat Transfer in HCCI Gasoline Engines

2009-06-15
2009-01-1804
In this work, heat loss was investigated in two different HCCI single cylinder engines. Thermocouples were adapted to the surfaces of the cylinder heads and the temperature oscillations were detected in a wide range of the engine operation conditions. The local heat transfer is analyzed with port fuel and direct injection, for different engine parameters and operating points. It is shown that the spatially averaged measured heat loss in HCCI operation represents the global heat loss well. The spatial variations are small in the operation map presuming stable operating points with low cyclic variations and good engine performance. Furthermore, the heat loss measured in HCCI operation is compared to the heat loss detected in homogeneous and stratified DI-SI operation in the same engine. It is shown that the local heat losses in stratified DI-SI operation show large variations, depending on the direction of the flame propagation.
Technical Paper

Investigations on Soot Emission Behavior of A Common-Rail Diesel Engine during Steady and Non-Steady Operating Conditions by Means of Several Measuring Techniques

2005-05-11
2005-01-2154
In this work the influence of various engine load changes with different engine speeds on the soot particle concentrations and properties was investigated because these operating modes are well known for short but high soot emissions. To derive specific information on emission behavior of particle matters tests were carried out with the Two-Color-Method and the so called RAYLIX technique in a four-cylinder CR-Diesel engine. The Two-Color-Method (2CM) gives crank angle resolved information about soot formation and oxidation processes inside the combustion chamber of a single cylinder. The RAYLIX technique is a combination of Rayleigh-scattering, Laser-Induced-Incandescence (LII) and extinction measurements which enable simultaneous measurements of temporally and spatially resolved soot concentration, mean primary particle radii and number densities in the exhaust gas manifold of the same cylinder investigated by the Two-Color-Method.
X