Refine Your Search

Topic

Search Results

Journal Article

Trends in Performance Characteristics of Modern Automobile SI and Diesel Engines

2009-06-15
2009-01-1892
A prior study (Chon and Heywood, [1]) examined how the design and performance of spark-ignition engines evolved in the United States during the 1980s and 1990s. This paper carries out a similar analysis of trends in basic engine design and performance characteristics over the past decade. Available databases on engine specifications in the U.S., Europe, and Japan were used as the sources of information. Parameters analyzed were maximum torque, power, and speed; number of cylinders and engine configuration, cylinder displacement, bore, stroke, compression ratio; valvetrain configuration, number of valves and their control; port or direct fuel injection; naturally-aspirated or turbocharged engine concepts; spark-ignition and diesel engines. Design features are correlated with these engine’s performance parameters, normalized by engine and cylinder displacement.
Technical Paper

Time Resolved Measurements of Exhaust Composition and Flow Rate in a Wankel Engine

1975-02-01
750024
Measurements were made of exhaust histories of the following species: unburned hydrocarbons (HC), carbon monoxide, carbon dioxide, oxygen, and nitric oxide (NO). The measurements show that the exhaust flow can be divided into two distinct phases: a leading gas low in HC and high in NO followed by a trailing gas high in HC and low in NO. Calculations of time resolved equivalence ratio throughout the exhaust process show no evidence of a stratified combustion. The exhaust mass flow rate is time resolved by forcing the flow to be locally quasi-steady at an orifice placed in the exhaust pipe. The results with the quasi-steady assumption are shown to be consistent with the measurements. Predictions are made of time resolved mass flow rate which compare favorably to the experimental data base. The composition and flow histories provide sufficient information to calculate the time resolved flow rates of the individual species measured.
Journal Article

The Trade-off between Automobile Acceleration Performance, Weight, and Fuel Consumption

2008-06-23
2008-01-1524
This paper evaluates how the fuel consumption of the average new U.S. passenger car will be penalized if engine and vehicle improvements continue to be focused on developing bigger, heavier and more powerful automobiles. We quantify a parameter called the Emphasis on Reducing Fuel Consumption (ERFC) and find that there has been little focus on improving fuel consumption in the U.S. over the past twenty years. In contrast, Europe has seen significantly higher ERFC. By raising the ERFC over the next few decades, we can reduce the average U.S. new car's fuel consumption by up to some 40 percent and cut the light-duty vehicle fleet's fuel use by about a quarter. Achieving substantial fuel use reduction will remain a major challenge if automobile size, weight and power continue to dominate.
Technical Paper

The Relevance of Fuel RON and MON to Knock Onset in Modern SI Engines

2008-10-06
2008-01-2414
The Octane Index (OI) relates a fuel's knocking characteristics to a Primary Reference Fuel (PRF) that exhibits similar knocking characteristics at the same engine conditions. However, since the OI varies substantially with the engine operating conditions, it is typically measured at two standard conditions: the Research and Motor Octane Number (RON and MON) tests. These tests are intended to bracket the knock-limited operating range, and the OI is taken to be a weighted average of RON and MON: OI = K MON + (1-K) RON where K is the weighing factor. When the tests were established, K was approximately 0.5. However, recent tests with modern engines have found that K is now negative, indicating that the RON and MON tests no longer bracket the knock-limited operating conditions. Experiments were performed to measure the OI of different fuels in a modern engine to better understand the role of fuel sensitivity (RON-MON) on knock limits.
Technical Paper

The Performance of Future ICE and Fuel Cell Powered Vehicles and Their Potential Fleet Impact

2004-03-08
2004-01-1011
A study at MIT of the energy consumption and greenhouse gas emissions from advanced technology future automobiles has compared fuel cell powered vehicles with equivalent gasoline and diesel internal combustion engine (ICE) powered vehicles [1][2]. Current data regarding IC engine and fuel cell vehicle performance were extrapolated to 2020 to provide optimistic but plausible forecasts of how these technologies might compare. The energy consumed by the vehicle and its corresponding CO2 emissions, the fuel production and distribution energy and CO2 emissions, and the vehicle manufacturing process requirements were all evaluated and combined to give a well-to-wheels coupled with a cradle-to-grave assessment. The assessment results show that significant opportunities are available for improving the efficiency of mainstream gasoline and diesel engines and transmissions, and reducing vehicle resistances.
Technical Paper

The Influence of Operating Variables and Prechamber Size on Combustion in a Prechamber Stratified-Charge Engine

1978-02-01
780966
This paper describes the results of experimental and computer simulation studies of the combustion process in the prechamber three-valve stratified-charge engine. Prechamber and main-chamber pressure data and matched computer simulation calculations are used to determine the effects of variations in overall air/fuel ratio, engine speed and load, and prechamber volume and orifice diameter on the parameters which define the combustion process (spark advance for optimum torque, ignition delay, combustion duration), on cylinder pressure diagrams (mean main-chamber pressure, mean pressure difference across the orifice, and cycle-by-cycle pressure fluctuations) and on exhaust emissions. General correlations are derived from the data for the shape of the combustion rate profile and the extent of the combustion duration.
Technical Paper

The Dispersion of Pollutants from Aircraft

1971-02-01
710322
Two aspects of the dispersion of pollutants from aircraft are reviewed. The first is the dispersal of aircraft exhaust emissions in the vicinity of airports; the second is the dispersal of exhaust trails in the upper atmosphere. Techniques available for modeling this dispersal and how they might be applied to the airport problem are discussed. Field studies of airport pollution are then reviewed to assess current pollutant levels around airports and the aircraft's contribution to those levels. The possibility of contrail formation from jet emissions at high altitude is then considered and the effect of uncertainties in the trail mixing processes evaluated.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

Predicting the Emissions and Performance Characteristics of a Wankel Engine

1974-02-01
740186
A performance model of a Wankel engine is developed which performs a leakage mass balance, accounts for heat transfer and flame quenching, and predicts the mass fraction burned as a function of chamber pressure. Experiments were performed on a production Wankel engine to obtain chamber pressure-time diagrams, and engine performance and emissions data. Model predictions of mass burned, global heat transfer, and hydrocarbon emission gave good agreement with measurements. Predictions of oxides of nitrogen are higher than measurements, especially at low loads. This is thought to be due to the adiabatic core gas assumption in the model. The need for a Wankel boundary layer study is identified.
Technical Paper

Predicting NOx Emissions and Effects of Exhaust Gas Recirculation in Spark-Ignition Engines

1973-02-01
730475
An improved theoretical model that predicts the nitric oxide concentration in the exhaust of a spark-ignition engine has been evaluated over a wide range of fuel-air ratios, percentage of exhaust gas recycled, and engine speed. Experiments were carried out in a standard CFR single-cylinder engine. Comparison of the measured and calculated exhaust nitric oxide concentrations shows good agreement over all operating conditions. It is shown that in lean mixtures, nitric oxide concentrations freeze early in the expansion stroke. For rich mixtures, freezing occurs later after all the charge has been burned and substantial nitric oxide decomposition takes place. In addition, effects of exhaust gas recirculation on flame speed, ignition delay, and cycle-to-cycle pressure variations were evaluated. A simple model relating cycle-to-cycle variations with changes in ignition delay is presented.
Technical Paper

Performance Scaling of Spark-Ignition Engines: Correlation and Historical Analysis of Production Engine Data

2000-03-06
2000-01-0565
This study examines the scaling between engine performance, engine configuration, and engine size and geometry, for modern spark-ignition engines. It focuses especially on design features that impact engine breathing. We also analyze historical trends to illustrate how changes in technology have improved engine performance. Different geometric parameters such as cylinder displacement, piston area, number of cylinders, number of valves per cylinder, bore to stroke ratio, and compression ratio, in appropriate combinations, are correlated to engine performance parameters, namely maximum torque, power and brake mean effective pressure, to determine the relationships or scaling laws that best fit the data. Engine specifications from 1999 model year vehicles sold in the United States were compiled into a database and separated into two-, three-, and four-valves-per-cylinder engine categories.
Technical Paper

Performance Maps of Turbocharged SI Engines with Gasoline-Ethanol Blends: Torque, Efficiency, Compression Ratio, Knock Limits, and Octane

2014-04-01
2014-01-1206
1 Downsizing and turbocharging a spark-ignited engine is becoming an important strategy in the engine industry for improving the efficiency of gasoline engines. Through boosting the air flow, the torque is increased, the engine can thus be downsized, engine friction is reduced in both absolute and relative terms, and engine efficiency is increased. However knock onset with a given octane rating fuel limits both compression ratio and boost levels. This paper explores the operating limits of a turbocharged engine, with various gasoline-ethanol blends, and the interaction between compression ratio, boost levels, and spark retard, to achieve significant increases in maximum engine mean effective pressure and efficiency.
Technical Paper

Modeling the Dynamics and Lubrication of Three Piece Oil Control Rings in Internal Combustion Engines

1998-10-19
982657
The oil control ring is the most critical component for oil consumption and friction from the piston system in internal combustion engines. Three-piece oil control rings are widely used in Spark Ignition (SI) engines. However, the dynamics and lubrication of three piece oil control rings have not been thoroughly studied from the theoretical point of view. In this work, a model was developed to predict side sealing, bore sealing, friction, and asperity contact between rails and groove as well as between rails and the liner in a Three Piece Oil Control Ring (TPOCR). The model couples the axial and twist dynamics of the two rails of TPOCR and the lubrication between two rails and the cylinder bore. Detailed rail/groove and rail/liner interactions were considered. The pressure distribution from oil squeezing and asperity contact between the flanks of the rails and the groove were both considered for rail/groove interaction.
Technical Paper

Knock Behavior of a Lean-Burn, H2 and CO Enhanced, SI Gasoline Engine Concept

2004-03-08
2004-01-0975
Experiments were performed to identify the knock trends of lean hydrocarbon-air mixtures, and such mixtures enhanced with hydrogen (H2) and carbon monoxide (CO). These enhanced mixtures simulated 15% and 30% of the engine's gasoline being reformed in a plasmatron fuel reformer [1]. Knock trends were determined by measuring the octane number (ON) of the primary reference fuel (mixture of isooctane and n-heptane) supplied to the engine that just produced audible knock. Experimental results show that leaner operation does not decrease the knock tendency of an engine under conditions where a fixed output torque is maintained; rather it slightly increases the octane requirement. The knock tendency does decrease with lean operation when the intake pressure is held constant, but engine torque is then reduced.
Technical Paper

Future Light-Duty Vehicles: Predicting their Fuel Consumption and Carbon-Reduction Potential

2001-03-05
2001-01-1081
The transportation sector in the United States is a major contributor to global energy consumption and carbon dioxide emission. To assess the future potentials of different technologies in addressing these two issues, we used a family of simulation programs to predict fuel consumption for passenger cars in 2020. The selected technology combinations that have good market potential and could be in mass production include: advanced gasoline and diesel internal combustion engine vehicles with automatically-shifting clutched transmissions, gasoline, diesel, and compressed natural gas hybrid electric vehicles with continuously variable transmissions, direct hydrogen, gasoline and methanol reformer fuel cell hybrid electric vehicles with direct ratio drive, and battery electric vehicle with direct ratio drive.
Technical Paper

Fuel-Air Mixing and Diesel Combustion in a Rapid Compression Machine

1988-02-01
880206
The influence of charge motion and fuel injection characteristics on diesel combustion was studied in a rapid compression machine (RCM), a research apparatus that simulates the direct-injection diesel in-cylinder environment. An experimental data base was generated in which inlet air flow conditions (temperature, velocity, swirl level) and fuel injection pressure were independently varied. High-speed movies using both direct and shadowgraph photography were taken at selected operating conditions. Cylinder pressure data were analyzed using a one-zone heat release model to calculate ignition delay times, premixed and diffusion burning rates, and cumulative heat release profiles. The photographic analysis provided data on the liquid and vapor penetration rates, fuel-air mixing, ignition characteristics, and flame spreading rates.
Technical Paper

Evaluation of a One-Zone Burn-Rate Analysis Procedure Using Production SI Engine Pressure Data

1993-10-01
932749
A single-zone burn-rate analysis based on measured cylinder pressure data proposed by Gatowski et al. in 1984 was evaluated over the full load and speed range of a spark-ignition engine. The analysis, which determines the fuel mass burning rate based on the First Law of Thermodynamics, includes sub-models for the effects of residual fraction, heat transfer, and crevices. Each of these sub-models was assessed and calibrated. Cylinder pressure data over the full engine operating range obtained from two different engines were used to examine the robustness of the analysis. The sensitivity of predictions to the parameters wall temperature, heat transfer model coefficients and exponent, swirl ratio, motoring polytropic constant, in-cylinder mass, and to uncertainty in pressure data was evaluated.
Technical Paper

Effects of Valve-Shrouding and Squish on Combustion in a Spark-ignition Engine

1985-10-01
852093
The effects of two commonly used methods for altering the combustion process in a spark-ignition engine are examined using pressure measurements and high-speed schlieren photography. A square cross-section visualization engine with two quartz sidewalls was used to allow optical access over the entire four-stroke operating cycle. Engine operation with a shrouded intake valve, which changed the intake-generated flow, and with a stepped piston, which changed the compression-generated flow, are compared to a base condition. In addition, cyclic variations in burning are examined for all cases.
Technical Paper

Computer Models For Evaluating Premixed and Disc Wankel Engine Performance

1986-03-01
860613
This paper describes two types of computer models which have been developed to analyze the performance of both premixed-charge and direct-injection stratified-charge Wankel engines. The models are based on a thermodynamic analysis of the contents of the engine's chambers. In the first type of model, the rate of combustion is predicted from measured chamber pressure by use of a heat release analysis. The analysis includes heat transfer to the chamber walls, work transfer to the rotor, enthalpy loss due to flows into crevices and due to leakage flows into adjacent chambers, and enthalpy gain due to fuel injection. The second type of computer model may be used to predict the chamber pressure during a complete engine cycle. From the predicted chamber pressure, the overall engine performance parameters are calculated. The rate of fuel burning as an algebraic function of crank angle is specified.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
X