Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

The Effect of Bypass Valve Control on the Steady-State and Transient Performance of Diesel Engines with Regulated Two-Stage Turbocharging System

2015-09-01
2015-01-1987
The concept of regulated two-stage turbocharging system is proposed to provide high boost pressure level over a wide range of engine speed by regulating the energy distribution of two turbochargers. However, the control strategy of turbine bypass valve becomes more complicated due to the frequently changing working of vehicle diesel engines. In this paper, a two-stage turbocharging system was matched for D6114 diesel engine to improve the low-speed torque. The effect of valve opening on the steady-state and transient performance was analyzed, and two different regulating laws were determined according to the different optimum aims. Then the transient response characteristics of two different regulating laws were studied and optimized at three speeds with the transient loading test. For steady-state performance, the output power and fuel efficiency were increased with the matched turbocharging system.
Technical Paper

Research on a Closed-Loop Control Strategy of Boost Pressure in Diesel Engines with Regulated Two-Stage Turbocharging System

2015-09-01
2015-01-1986
The level of boost pressure has a significant effect on optimizing the steady-state and transient performance of turbocharged diesel engines. However the problem of matching the wide speed range diesel engine and the high pressure turbocharging system has to be resolved. The regulated two-stage (RTS) system is an effective method to improve the fuel economy, transient response and smoke emissions. Compared with the difficult matching problem of the RTS system, the problem of boost pressure control is more complex due to the frequently changing operating conditions. To overcome the limitations of an open-loop control strategy, a closed-loop boost pressure control strategy was studied numerically using a mean value model of a diesel engine with RTS system. The system identification was conducted for the transient response from the turbine bypass opening command to the boost pressure.
Technical Paper

Research on Life Cycle of Typical Passenger Vehicles Based on Energy Structure

2020-12-14
2020-01-5187
Based on the principle of carbon footprint, this paper selects typical passenger cars, such as internal combustion engine vehicles (ICEV), plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) in the market of China as the research objects, and compares the energy consumption and carbon emissions of the three vehicle models in the whole life cycle for three major stages of manufacturing, driving and recycling in three representative cities. The results show that the manufacturing energy consumption of BEV is 5 times of HEV and 10 times of ICEV. For the BEV, only after driving a certain mileage it can be a less the unit energy consumption and emissions than ICEV. The whole life cycle carbon emissions of passenger cars with different power types is not only related to mileage, but also related to the energy structure of local electric power supply.
Technical Paper

Power Matching and Control Strategy of Plug-in Series Hybrid Electric Car

2010-10-25
2010-01-2195
In this paper, based on the plug-in series hybrid electric vehicle development project, the vehicle technology solutions and the match of power system parameters were analyzed. The vehicle control strategies were identified and optimized according to plug-in hybrid vehicle features. The plug-in series hybrid, rule-based logic threshold switching control strategy, charge depleting (CD) mode and charge-sustaining (CS) mode are chosen according to the key factors, such as the environment, performance requirements, technical requirements and cost. And then the structure and model of vehicle control strategy were established to carry out vehicle energy management and power system control. The parameter selection, electric drive system matching, energy storage system design based on the requirement of vehicle performance, system architecture and control strategy are presented.
Technical Paper

On the Development of Lightweight IP Carrier

2017-03-28
2017-01-0502
Now weight reduction is increasingly needed in automotive industry to improve fuel efficiency and to reduce emission. Various lightweight technologies have been used to vehicles. Because of its heavy weight and complex shape, IP carrier tends to be integration and weight intensive. Therefore lightweight is necessary for IP carrier. This paper lists the fourth lightweight technologies used for IP carrier by now, which are Magnesium alloy part, Aluminum alloy part, Hybrid composite part, Composite material injection part. For magnesium alloy part and aluminum alloy part, they have been mass produced for some years. The hybrid composite part has been researched for some years. Recently, the injection composite part has been researched and some parts have been developed and tested. By outlining the design, manufacturing, weight reduction and cost of these lightweight technologies, this paper fully analyzed these used technologies.
Technical Paper

Impact of Fuel Properties on GDI Injector Deposit Formation and Particulate Matter Emissions

2020-04-14
2020-01-0388
Gasoline Direct Injection (GDI) engines show advantages in reducing fuel consumption and gaseous pollution emissions when compared to Port Fuel Injection (PFI) engines. However, particulate matter emissions are an essential issue for GDI engine development due to increasingly stringent worldwide emission regulations. Previous studies have shown that gasoline fuel compositions, as well as deposits formed in GDI fuel injectors, can affect emissions in the GDI engine. In this work, the impact of gasoline fuel properties on forming injector deposits and the resulting effect on particulate emissions were investigated using a modern Chinese GDI engine. Six test fuels with different properties involving changes in olefins, aromatics, heavy (C9/C9+) aromatics, T90 and deposit control additive (DCA) were prepared based on the gasoline survey results from the Chinese gasoline fuel market and the China 6 gasoline fuel standard limits.
Technical Paper

Development of a Gas-Phase LPG Injection System for a Small SI Engine

2003-10-27
2003-01-3260
This paper presents the development of an electronic control LPG gas injection system and its application in a small SI engine. The tests results show that the developed LPG gas injection system can meet the needs for the goal of high engine power output and low exhaust emissions based on the engine bench tests. With the LPG electronic gas injection system, the air-fuel ratio can be optimized based on the requirements and CO and NOx emission levels are decreased significantly compared with the LPG mechanical mixer fuel supply system, based on the same HC emission levels. With the new gas phase LPG electronic control injection system, the HC emission level is controlled below the 300 ppm under most engine conditions and under 200 ppm when the engine speed is over 3000 r/min. The NOx emission level is under 2600 ppm in the whole range of engine operation conditions and is decreased by 2000 ppm compared with the LPG mechanical mixer system.
Technical Paper

Combustion and Emissions of Ethanol Fuel (E100) in a Small SI Engine

2003-10-27
2003-01-3262
An air-cooled, four-stroke, 125 cc electronic gasoline fuel injection SI engine for motorcycles is altered to burn ethanol fuel. The effects of nozzle orifice size, fuel injection duration, spark timing and the excess air/ fuel ratio on engine power output, fuel and energy consumptions and engine exhaust emission levels are studied on an engine test bed. The results show that the maximum engine power output is increased by 5.4% and the maximum torque output is increased by 1.9% with the ethanol fuel in comparison with the baseline. At full load and 7000 r/min, HC emission is decreased by 38% and CO emission is decreased 46% on average over the whole engine speed range. However, NOx levels are increased to meet the maximum power output. The experiments of the spark timing show that the levels of HC and NOx emission are decreased markedly by the delay of spark timing.
Technical Paper

Combustion and Emissions Characteristics of a Small Spark-Ignited LPG Engine

2002-05-06
2002-01-1738
This paper presents an experimental study of the emission characteristics of a small Spark-Ignited, LPG engine. A single cylinder, four-stroke, water-cooled, 125cc SI engine for motorcycle is modified for using LPG fuel. The power output of LPG is above 95% power output of gasoline. The emission characteristics of LPG are compared with the gasoline. The test result shows that LPG for small SI engine will help to reduce the emission level of motorcycles. The HC and CO emission level can be reduced greatly, but NOx emissions are increased. The emission of motorcycle using LPG shows the potential to meet the more strict regulation.
Technical Paper

Combined Technologies for Efficiency Improvement on a 1.0 L Turbocharged GDI Engine

2019-04-02
2019-01-0233
The CO2 reduction request for automotive industry promotes the efforts on the engine thermal efficiency improvement. The goal of this research is to improve the thermal efficiency on an extremely downsized 3-cylinder 1.0 L turbocharged gasoline direct injection engine. Effects of compression ratio, exhaust gas recirculation (EGR), valve timing and viscosity of oil on fuel economy were studied. The results show that increasing compression ratio, from 9.6 to 12, can improve fuel economy at relative low load (below 12 bar BMEP), but has a negative effect at high load due to increased knock intensity. EGR can significantly reduce the pumping loss at low load, optimize combustion phase and reduce exhaust gas temperature. Therefore, the fuel consumption is reduced at all test points. The average brake thermal efficiency (BTE) benefit percentage is 3.47% with 9.6 compression ratio and 5.33 % with 12 compression ratio.
Technical Paper

Characteristics of Particulate Emissions Fueled with LPG and Gasoline in a Small SI Engine

2004-10-25
2004-01-2901
This paper presents experimental studies of particulate emissions in a small SI engine fueled with LPG and gasoline fuels. A single cylinder, four-stroke, water-cooled, 125cc EFI engine with gasoline fuel is used as the baseline engine. Characteristics of the particulate emissions of the two fuels are compared. Test results show that: there are great quantities of particulate emissions for both fuels, but the total numbers of particulate emissions for the two fuels are generally in the same level. The distribution of the particulate sizes is in bimodal type for the gasoline, but for the LPG its first peak is not markedly in some conditions. The particulate sizes of the second peak for the two fuels appear at about the same size. At middle loads and 3000r/min, the particulate emissions for both of the two fuels are the greatest.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

A Simulation Research on Emission Control Technology of Low-Speed Two-Stroke Diesel Engine Based on EGR and Miller Cycle

2019-04-02
2019-01-0945
This paper investigates the influences of EGR and Miller cycle on NOx emission of a heavy-duty two-stroke diesel engine. The NOx emission is strictly restricted by the IMO Tier III Emission Regulations, resulting in an insufficient application of the single emission reduction technology to meet the emission requirements. It is asserted that EGR is the most effective manner to reduce NOx emission, but the fuel consumption increases simultaneously. In consideration of emission reduction with fuel economy, EGR and Miller cycle were combined and studied in this paper. Parameters like in-cylinder pressure, in-cylinder temperature, mass in the chamber, emission (NOx and soot) and fuel consumption rate were investigated based on a single-cylinder 3D model. The wet condition that happens in the engine application was considered in the model development process. The model was validated and compared with the experimental data.
X