Refine Your Search

Topic

Author

Search Results

Journal Article

A Model-based Solution to Robust and Early Detection of Control Surface Runaways

2011-10-18
2011-01-2803
This paper discusses the design of a model-based fault detection scheme for robust and early detection of runaways in aircraft control surfaces servo-loop. The proposed scheme can be embedded within the structure of in-service monitoring systems as a part of the Flight Control Computer (FCC) software. The final goal is to contribute to improve the performance detection of unanticipated runaway faulty profiles having very different dynamic behaviors, while retaining a perfect robustness. The paper discusses also the tradeoffs between adequacy of the technique and its implementation level, industrial validation process with Engineering support tools, as well as the tuning aspects. The proposed methodology is based on a combined data-driven and system-based approach using a dedicated Kalman filtering. The technique provides an effective method ensuring robustness and good performance (well-defined real-time characteristics and well-defined error rates).
Technical Paper

A New Approach Based on Statistical Modeling of Electrical Consumption for Electrical Generator Demand Estimation

2011-10-18
2011-01-2669
With the last generation of large aircraft, the electrical needs have increased to reach a power close to 1MW. A power increase directly impacts one of the prominent criterions in aircraft design process: weight. Therefore, designers face the challenge to reduce generation while the power demand is increasing. The proposed paper details a methodology based on statistical approach to estimate the electrical consumption of an electrical network. Moreover, the modeling proposed in this paper allows taking into account peaks defined by their power and duration. Based on in-service measurements on commercial aircraft flights, this study proposes two methods to estimate electrical consumption of an electrical network. The first method is described. Based on modeling thanks to an efficient clustering, a Monte Carlo simulation is performed on all the loads to estimate the electrical power on the network with relevant results.
Journal Article

A Vision Based Audit Method and Tool that Compares a Systems Installation on a Production Aircraft to the Original Digital Mock-Up

2011-10-18
2011-01-2565
The work describes a concept application to aid a safety engineer to perform an audit of a production aircraft against safety driven installation requirements. The capability is achieved using the following steps: A) Image capture of a product and measurement of distances between datum points within the product with/without references to a planar surface B) A digital reconstruction of the fabricated product by using multiple captured images to reposition parts according to the actual model. C) The projection onto the 3D digital reconstruction of the safety related installation constraints, respecting the original intent of the constraints that are defined in the digital mock-up.
Journal Article

Application of Genetic Algorithm for Preliminary Trajectory Optimization

2011-10-18
2011-01-2594
The aviation sector has played a significant role in shaping the world into what it is today. The rapid growth of global economies and the corresponding sharp rise in the number of people now wanting to travel on business and for pleasure, has largely been responsible for the development of this industry. With a predicted rise in Revenue Passenger Kilometers (RPK) by over 150% in the next 20 years, the industry will correspondingly be a significant contributor to environmental emissions. Under such circumstances optimizing aircraft trajectories for lowered emissions will play a critical role amongst various other measures, in mitigating the probable environmental effects of increased air traffic. Aircraft trajectory optimization using evolutionary algorithms is a novel field and preliminary studies have indicated that a reduction in emissions is possible when set as objectives.
Technical Paper

Applying a Concept for Robot-Human Cooperation to Aerospace Equipping Processes

2011-10-18
2011-01-2655
Significant effort has been applied to the introduction of automation for the structural assembly of aircraft. However, the equipping of the aircraft with internal services such as hydraulics, fuel, bleed-air and electrics and the attachment of movables such as ailerons and flaps remains almost exclusively manual and little research has been directed towards it. The problem is that the process requires lengthy assembly methods and there are many complex tasks which require high levels of dexterity and judgement from human operators. The parts used are prone to tolerance stack-ups, the tolerance for mating parts is extremely tight (sub-millimetre) and access is very poor. All of these make the application of conventional automation almost impossible. A possible solution is flexible metrology assisted collaborative assembly. This aims to optimise the assembly processes by using a robot to position the parts whilst an operator performs the fixing process.
Journal Article

Blind Bolts Developments

2011-10-18
2011-01-2755
There is an ever growing demand for blind fastener in the aerospace industry. This demand is driven not only by the advantages of single sided installation, but also by the potential to fully automate their installation process. Blind fasteners can easily be integrated with innovative end-effectors that combine drilling, installation and inspection systems, enabling the reduction of process cycle times and their associated cost savings. Clearly the advantages of single sided installation are a key benefit, but it cannot be forgotten that currently the mechanical performance of these systems is reduced compared with conventional threaded or swaged parallel shank fasteners. There are other important drawbacks existing around them which could penalise significantly the optimised design and performance of the structures. Specific key characteristics that take into account some of these drawbacks have been established by Airbus which will be referenced in this paper.
Book

Care and Repair of Advanced Composites, 3rd Edition

2020-12-31
The new edition of the well known Care and Repair of Advanced Composites, 3rd Edition, improves on the usefulness of this practical guide geared towards the aerospace industry. Keith B. Armstrong, the original lead author of the first edition was still in charge of this project, counting on the expert support of Eric Chesmar, senior composites specialist at United Airlines. Mr. Chesmar is also an active member of SAE International's CACRC (Commercial Aircraft Composite Repair Committee), an elite group of industry experts dedicated to the standardization, safety, security, and efficiency of composite repairs in the airline industry. Mr. Francois Museux (Airbus) and Mr. William F. Cole II also contributed. Care and Repair of Advanced Composites, 3rd Edition, presents a fully updated approach to the training syllabus recommended for repair design engineers and composite repair mechanics.
Technical Paper

Combination of Experimental and Computational Approaches to A320 Wing Assembly

2017-09-19
2017-01-2085
The paper is devoted to the simulation of A320 wing assembly on the base of numerical experiments carried out with the help of ASRP software. The main goal is to find fasteners’ configuration with minimal number of fastening elements that provides closing of admissible initial gaps. However, for considered junction type initial gap field is not known a priori though it should be provided as input data for computations. In order to resolve this problem the methodology of random initial gap generation based on available results of gap measurements is developed along with algorithms for optimization of fasteners' configuration on generated initial gaps. Presented paper illustrates how this methodology allows optimizing assembly process for A320 wing.
Technical Paper

Development of a High Temperature Power Module Technology with SiC Devices for High Density Power Electronics

2011-10-18
2011-01-2620
This paper presents the development of a high density packaging technology for wide band gap power devices, such as silicon carbide (SiC). These devices are interesting candidates for the next aircraft power electronic converters. Effectively they achieve high switching frequencies thanks to the low losses level. High switching frequencies lead to reduce the passive components size and to an overall weight reduction of power converters. Moreover, SiC devices may enable operation at junction temperatures around 250°C. The cooling requirement is much less stringent than for usual Si devices. This might considerably simplify the cooling system, and reduce the overall weight. To achieve the integration requirements for SiC devices, classical wire bonding interconnection is replaced by a stacked packaging using bump interconnection technologies, called sandwich. These technologies offer two thermal paths to drain heat out and present more power integration possibilities.
Journal Article

Development of a Robotic System for Automated Drilling and Inspection of Small Aerostructures

2023-03-07
2023-01-1012
Traditional solutions developed for the aerospace industry must overcome challenges posed for automation systems like design, requalification, large manual content, restricted access, and tight tolerances. At the same time, automated systems should avoid the use of dedicated equipment so they can be shared between jigs; moved between floor levels and access either side of the workpiece. This article describes the development of a robotic system for drilling and inspection for small aerostructure manufacturing specifically designed to tackle these requirements. The system comprises three work packages: connection within the digital thread (from concept through to operational metrics including Statistical Process Control), innovative lightweight / low energy drill, and auto tool-change with in-process metrology. The validation tests demonstrating Technology Readiness Level 6 are presented and results are shown and discussed.
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

2017-09-19
2017-01-2099
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

Eco-efficient Materials for Aircraft Application

2011-10-18
2011-01-2742
Due to the importance of fulfilling the actual and upcoming environmental legislation, it is an Airbus main target to develop eco-efficient materials. Under consideration of the economical effects, these processes will be implemented into the production line. This paper gives an overview of Airbus and its partners research work, the results obtained within the frame of the European funded, integrated technology demonstrator (ITD) ECO Design for Airframe. This ITD is part of the joint technology initiative Clean Sky. Developments with different grade of maturity from “upstream” as the investigation of materials from renewable recourses up to materials now in use in production as low volatile organic compounds cleaner are under investigation. As a basis for future eco-efficient developments an approach for a quantitative life cycle assessment will be demonstrated.
Technical Paper

Evaluation of Small Scale Icing Tunnel Test Results

2007-09-24
2007-01-3328
A test has been performed using a scaled aircraft wing section in an icing tunnel facility. The model had an electro-thermal ice protection system installed. The tests performed considered both anti-icing and de-icing modes of operation. The results have been assessed using numerical codes and the effect of model scaling has been considered. The non-scaled skin thickness of the model was found to modify the predicted behaviour of a full-scale installation, predominantly due to lateral conduction effects. The extent of this has been assessed and recommendations are made as to the performance that may be expected at full-scale.
Technical Paper

Extended Non-Destructive Testing of Composite Bonds

2011-10-18
2011-01-2514
Composite materials are increasingly being used in the manufacturing of structural components in aeronautics industry. A consequent light-weight design of CFRP primary structures requires adhesive bonding as the optimum joining technique but is limited due to a lack of adequate quality assurance procedures. The successful implementation of a reliable quality assurance concept for adhesive bonding within manufacturing and in-service environments will provide the basis for increased use of lightweight composite materials for highly integrated aircraft structures thus minimizing rivet-based assembly. The expected weight saving for the fuselage airframe is remarkable and therefore the driver for research and development of key-enabling technologies. The performance of adhesive bonds mainly depends on the physico-chemical properties of adherend surfaces.
Technical Paper

Extension of a 2D Algorithm for Catch Efficiency Calculation to Three Dimensions

2019-06-10
2019-01-2013
Accurate calculation of the catch efficiency β is of paramount importance for any ice accretion calculation since β is the most important factor in determining the mass of ice accretion. A new scheme has been proposed recently in [1] for accurately calculating β on a discretized two-dimensional geometry based on the results of a Lagrangian droplet trajectory integrator (start and impact conditions). This paper proposes an extension to the algorithm in Ref. [1], which is applicable to three-dimensional surfaces with arbitrary surface discretization. The 3D algorithm maintains the positive attributes of the original 2D algorithm, namely mass conservation of the impinging water, capability to deal with overlapping impingement regions and with crossing trajectories, computational efficiency of the algorithm, and low number of trajectories required to reach good accuracy in catch efficiency.
Technical Paper

Fixturing and Tooling for Wing Assembly with Reconfigurable Datum System Pickup

2011-10-18
2011-01-2556
The aerospace manufacturing sector is continuously seeking automation due to increased demand for the next generation single-isle aircraft. In order to reduce weight and fuel consumption aircraft manufacturers have increasingly started to use more composites as part of the structure. The manufacture and assembly of composites poses different constraints and challenges compared to the more traditional aircraft build consisting of metal components. In order to overcome these problems and to achieve the desired production rate existing manufacturing technologies have to be improved. New technologies and build concepts have to be developed in order to achieve the rate and ramp up of production and cost saving. This paper investigates how to achieve the rib hole key characteristic (KC) in a composite wing box assembly process. When the rib hole KC is out of tolerances, possibly, the KC can be achieved by imposing it by means of adjustable tooling and fixturing elements.
Journal Article

Flexible Tooling for Wing Box Rib Clamping and Drilling

2011-10-18
2011-01-2639
Currently the wing box rib assembly process requires the manual location and temporary fixing of components within product specific jig or fixtures for drilling. After drilling and reaming, parts are separated, cleaned, deburred prior to adding sealant, reclaiming and final bolting, but this may significantly increase cost, manufacturing lead-time, reduces flexibility and cannot usually be economically modified for use on other aircraft types. Due to potential increase in demand for the next generation single isle aircraft, existing tooling solutions have to be improved and new technologies have to be developed. This paper describes the development and testing of flexible tooling to provide clamping and support for drilling wing box ribs to mating rib posts within a restricted environment. Results are presented along with a discussion of the problems that may be encountered during clamping trials.
Technical Paper

Flight Test Identification Methods for Loads Models and Applications

2011-10-18
2011-01-2763
The Loads discipline contributes to the aircraft structural design by delivering shear, moment and torque (SMT, loads) all across the airframe resulting from application of aircraft airworthiness requirements as laid down in the CS 25/FAR 25 regulations and in some domestic ones. Loads computation considers the maneuver and gust conditions prescribed therein as well as other special design conditions. It is based on very detailed modeling, accounting for aerodynamics in all configurations, mass properties, flexibility of the airframe, flight control laws and retarded laws, hydraulic actuation, and specification of flight control system failure conditions. The resulting shear loads are processed and refined (e.g. nodal loads) and taken into account by the stress department for structural design.
Technical Paper

Force Controlled Assembly of a Compliant Rib

2011-10-18
2011-01-2734
Automation in aerospace industry is often in the form of dedicated solutions and focused on processes like drilling, riveting etc. The common industrial robot has due to limitations in positional accuracy and stiffness often been unsuitable for aerospace manufacturing. One major cost driver in aircraft manufacturing is manual assembly and the bespoke tooling needed. Assembly tasks frequently involve setting relations between parts rather than a global need for accuracy. This makes assembly a suitable process for the use of force control. With force control a robot equipped with needed software and hardware, searches for desired force rather than for a position. To test the usefulness of force control for aircraft assembly an experimental case aligning a compliant rib to multiple surfaces was designed and executed. The system used consisted of a standard ABB robot and an open controller and the assembly sequence was made up of several steps in order to achieve final position.
Technical Paper

IT Security Management of Aircraft in Operation: A Manufacturer's View

2011-10-18
2011-01-2717
Over the last few years, IT systems have quickly found their way onboard aircrafts, driven by the continuous pursuit of improved safety and efficiency in aircraft operation, but also in an attempt to provide the ultimate in-flight experience for passengers. Along with IT systems and communication links came IT security as a new factor in the equation when evaluating and monitoring the operational risk that needs to be managed during the operation of the aircraft. This is mainly due to the fact that security deficiencies can cause services to be unavailable, or even worse, to be exploited by intentional attacks or inadvertent actions. Aircraft manufacturers needed to develop new processes and had to get organized accordingly in order to efficiently and effectively address these new risks.
X