Refine Your Search

Topic

Author

Search Results

Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

2018-04-03
2018-01-0163
Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Journal Article

3D-CFD RANS Methodology to Predict Engine-Out Emissions with Gasoline-Like Fuel and Methanol for a DISI Engine

2022-09-16
2022-24-0038
Renewable fuels, such as bio- and e-fuels, are of great interest for the defossilization of the transport sector. Among these fuels, methanol represents a promising candidate for emission reduction and efficiency increase due to its very high knock resistance and its production pathway as e-fuel. In general, reliable simulation tools are mandatory for evaluating a specific fuel potential and optimizing combustion systems. In this work, a previously presented methodology (Esposito et al., Energies, 2020) has been refined and applied to a different engine and different fuels. Experimental data measured with a single cylinder engine (SCE) are used to validate RANS 3D-CFD simulations of gaseous engine-out emissions. The RANS 3D-CFD model has been used for operation with a toluene reference fuel (TRF) gasoline surrogate and methanol. Varying operating conditions with exhaust gas recirculation (EGR) and air dilution are considered for the two fuels.
Technical Paper

A Data-driven Approach for Enhanced On-Board Fault Diagnosis to Support Euro 7 Standard Implementation

2024-04-09
2024-01-2872
The European Commission is going to publish the new Euro7 standard shortly, with the target of reducing the impact on pollutant emissions due to transportation systems. Besides forcing internal combustion engines to operate cleaner in a wider range of operating conditions, the incoming regulation will point out the role of On-Board Monitoring (OBM) as a key enabler to ensure limited emissions over the whole vehicle lifetime, necessarily taking into account the natural aging of involved systems and possible electronic/mechanical faults and malfunctions. In this scenario, this work aims to study the potential of data-driven approaches in detecting emission-relevant engine faults, supporting standard On-Board Diagnostics (OBD) in pinpointing faulty components, which is part of the main challenges introduced by Euro7 OBM requirements.
Technical Paper

A New Euler/Lagrange Approach for Multiphase Simulations of a Multi-Hole GDI Injector

2015-04-14
2015-01-0949
Compared to conventional injection techniques, Gasoline Direct Injection (GDI) has a lot of advantages such as increased fuel efficiency, high power output and low emission levels, which can be more accurately controlled. Therefore, this technique is an important topic of today's injection system research. Although the operating conditions of GDI injectors are simpler from a numerical point of view because of smaller Reynolds and Weber numbers compared to Diesel injection systems, accurate simulations of the breakup in the vicinity of the nozzle are very challenging. Combined with the complications of experimental techniques that could be applied inside the nozzle and at the nozzle exit, this is the reason for the lack of understanding the primary breakup behavior of current GDI injectors.
Technical Paper

A Numerical Investigation of Potential Ion Current Sensor Applications in Premixed Charge Compression Ignition Engine

2022-09-16
2022-24-0041
Simultaneous reduction of engine pollutants (e.g., CO, THC, NOx, and soot) is one of the main challenges in the development of new combustion systems. Low-temperature combustion (LTC) concepts in compression ignition (CI) engines like premixed charged compression ignition (PCCI) make use of pre-injections to create a partly homogenous mixture. In the PCCI combustion regime, a direct correlation between injection and pollutant formation is no longer present because of long ignition delay times. In LTC combustion systems, the in-cylinder pressure sensor is normally used to help the combustion control. However, to allow the control of PCCI engines, new sensor concepts are investigated to obtain additional information about the PCCI combustion for advanced controller structures. In LTC combustion systems like gasoline-controlled autoignition (GCAI) concepts, the application of ion current sensors enables additional monitoring of the combustion process with real-time capability.
Technical Paper

Advanced Functional Pulse Testing of a Two-Stage VCR-System

2019-04-02
2019-01-1195
Two-stage variable compression ratio (VCR) systems for spark ignited engines offer a CO2 reduction potential of approx. 5%. Due to their modularity, connecting rod based VCR-systems can be integrated into existing engine assembly systems, where engines can be built in parallel with or without such a system, depending on performance and market requirements. In order to comply with the new RDE emission standards with high specific power engine variants, VCR systems enable high load engine operation without fuel enrichment. The interactions between the hydraulic-, mechanical - and oil supply systems of a VCR-system with variable connecting rod length are complex and require a well-developed and adapted layout of all subsystems. This demands the use of tailored measurement and simulation tools during the development and application phases. In this context, Advanced Functional Pulse Testing enables single-parameter analyses of VCR con rods.
Journal Article

Analysis of Cyclic Variation Using Time-Resolved Tomographic Particle-Image Velocimetry

2020-09-15
2020-01-2021
To achieve the strict legislative restrictions for emissions from combustion engines, vast improvements in engine emissions and efficiency are required. Two major impacting factors for emissions and efficiency are the reliable generation of an effective mixture before ignition and a fast, stable combustion process. While the mixture of air and injected fuel is generated by highly three-dimensional, time-dependent flow phenomena during the intake and compression stroke, the turbulent flame propagation is directly affected by the turbulence level in the flow close to the advancing flame front. However, the flow field in the combustion chamber is highly turbulent and subject to cycle-to-cycle variations (CCV). To understand the fundamental mechanisms and interactions, 3D flow measurements with combined high spatial and temporal resolution are required.
Technical Paper

Assessment of Different Included Spray Cone Angles and Injection Strategies for PCCI Diesel Engine Combustion

2017-03-28
2017-01-0717
For compliance with legislative regulations as well as restricted resources of fossil fuel, it is essential to further reduce engine-out emissions and increase engine efficiency. As a result of lower peak temperatures and increased homogeneity, premixed Low-Temperature Combustion (LTC) has the potential to simultaneously reduce nitrogen oxides (BSNOx) and soot. However, LTC can lead to higher emissions of unburnt total hydrocarbons (BSTHC) and carbon monoxide (BSCO). Furthermore, losses in efficiency are often observed, due to early combustion phasing (CA50) before top dead center (bTDC). Various studies have shown possibilities to counteract these drawbacks, such as split-injection strategies or different nozzle geometries. In this work, the combination of both is investigated. Three different nozzle geometries with included spray angles of 100°, 120°, and 148° and four injection strategies are applied to investigate the engine performance.
Journal Article

Assessment of the Full Thermodynamic Potential of C8-Oxygenates for Clean Diesel Combustion

2017-09-04
2017-24-0118
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB) at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for combustion in a Diesel engine. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines (SCE). For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load (2400 min-1, 14.8 bar IMEP), the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
Technical Paper

Borderline Design of Crankshafts Based on Hybrid Simulation Technology

2009-06-15
2009-01-1918
This paper introduces different modeling approaches of crankshafts, compares the refinement levels and discusses the difference between the results of the crankshaft durability calculation methodologies. A V6 crankshaft is considered for the comparison of the refinement levels depending on the deviation between the signals such as main bearing forces and deflection angle. Although a good correlation is observed between the results in low speed range, the deviation is evident through the mid to high speed ranges. The deviation amplitude differs depending on the signal being observed and model being used. An inline 4 crankshaft is considered for the comparison of the durability results. The analysis results show that the durability potential is underestimated with a classical crankshaft calculation approach which leads to a limitation of maximum speed of 5500 rpm.
Journal Article

CFD Simulation of Oil Jets for Piston Cooling Applications Comparing the Level Set and the Volume of Fluid Method

2019-04-02
2019-01-0155
A new CFD simulation model and methodology for oil jet piston cooling has been developed using the modern level set approach. In contrast to the widely used volume of fluid (VOF) method, the level set approach explicitly tracks the interface surface between oil and air, using an additional field equation. The method has been extensively tested on two- and three-dimensional examples using results from literature for comparison. Furthermore, several applications of oil jet piston cooling on Ford engines have been investigated and demonstrated. For example, three-dimensional simulations of piston cooling nozzle jets on a diesel engine have been calculated and compared to test-rig measurements. Laminar jets, as well as jets with droplets and fully atomized jets, have been simulated using realistic material properties, surface tension, and gravity.
Technical Paper

Continued Study of the Error and Consistency of Fan CFD MRF Models

2010-04-12
2010-01-0553
The most common fan model to use in commercial CFD software today is the Multiple Reference Frame (MRF) model. This is at least valid for automotive under hood applications. Within the industry, for this typical application, this model is commonly known to under predict performance. This under prediction has been documented by the authors' of this paper in SAE paper 2009-01-0178 and VTMS paper 2009-01-3067. Furthermore has this been documented by S.Moreau from Valeo in “Numerical and Experimental Investigation of Rotor-Stator Interaction in Automotive Engine Cooling Fan Systems”, ETC, 7th European Conference on Turbomachinery, 2007. In preceding papers a specific methodology of use has been documented and it has been shown that the MRF model under predicts performance for the airflow in a cooling system commonly with 14% in volumetric flow rate. This is for a system dominated by inertial effects.
Technical Paper

Cooling Performance Investigation of a Rear Mounted Cooling Package for Heavy Vehicles

2011-04-12
2011-01-0174
The aim of the study was to investigate the cooling performance of two cooling package positions for distribution vehicles by using Computational Fluid Dynamics. The first cooling package was positioned in the front of the vehicle, behind the grill and the second position was at the rear of the vehicle. Each case was evaluated by its cooling performance for a critical driving situation and its aerodynamic drag at 90 km/h, where the largest challenge of an alternative position is the cooling air availability. The geometry used was a semi-generic commercial vehicle, based on a medium size distribution truck with a heat rejection value set to a fixed typical level at maximum power for a 13 litre Euro 6 diesel engine. The heat exchangers included in the study were the air conditioning condenser, the charge air cooler and the radiator. It was found that the main problem with the rear mounted cooling installation was the combination of the fan and the geometry after the fan.
Technical Paper

Development of Phenomenological Models for Engine-Out Hydrocarbon Emissions from an SI DI Engine within a 0D Two-Zone Combustion Chamber Description

2021-09-05
2021-24-0008
The increasingly stringent limits on pollutant emissions from internal combustion engine-powered vehicles require the optimization of advanced combustion systems by means of virtual development and simulation tools. Among the gaseous emissions from spark-ignition engines, the unburned hydrocarbon (HC) emissions are the most challenging species to simulate because of the complexity of the multiple physical and chemical mechanisms that contribute to their emission. These mechanisms are mainly three-dimensional (3D) resulting from multi-phase physics - e.g., fuel injection, oil-film layer, etc. - and are difficult to predict even in complex 3D computational fluid-dynamic (CFD) simulations. Phenomenological models describing the relationships between the physical-chemical phenomena are of great interest for the modeling and simplification of such complex mechanisms.
Technical Paper

Efficient Test Bench Operation with Early Damage Detection Systems

2019-09-09
2019-24-0192
The efficient operation of powertrain test benches in research and development is strongly influenced by the state of “health” of the functional test object. Hence, the use of Early Damage Detection Systems (EDDS) with Unit Under Test (UUT) monitoring is becoming increasingly popular. An EDDS should primarily avoid total loss of the test object and ensure that damaged parts are not completely destroyed, and can still be inspected. Therefore, any abnormality from the standard test object behavior, such as an exceeding of predefined limits, must be recognized at an early testing time, and must lead to a shutdown of the test bench operation. With sensors mounted on the test object, it is possible to isolate the damage cause in the event of its detection. Advanced EDDS configurations also optimize the predefined limits by learning new shutdown values according to the test object behavior within a very short time.
Journal Article

Experimental Analysis of the Impact of Injected Biofuels on In-Cylinder Flow Structures

2016-05-18
2016-01-9043
The interaction of biofuel sprays from an outward opening hollow cone injector and the flow field inside an internal combustion engine is analyzed by Mie-Scattering Imaging (MSI) and high-speed stereoscopic particle-image velocimetry (stereo-PIV). Two fuels (ethanol and methyl ethyl ketone (MEK)), four injection pressures (50, 100, 150, and 200 bar), three starting points of injection (60°, 277°, and 297° atdc), and two engine speeds (1,500 rpm and 2,000 rpm) define the parameter space of the experiments. The MSI measurements determine the vertical penetration length and the spray cone angle of the ethanol and MEK spray. Stereo-PIV is used to investigate the interaction of the flow field and the ethanol spray after the injection process for a start of injection at 60° atdc. These measurements are compared to stereo-PIV measurements without fuel injection performed in the same engine [19].
Journal Article

Experimental Investigation of the Influence of Boost on Combustion and Particulate Emissions in Optical and Metal SGDI-Engines Operated in Stratified Mode

2016-04-05
2016-01-0714
Boosting and stratified operation can be used to increase the fuel efficiency of modern gasoline direct-injected (GDI) engines. In modern downsized GDI engines, boosting is standard to achieve a high power output. However, boosted GDI-engines have mostly been operated in homogenous mode and little is known about the effects of operating a boosted GDI-engine in stratified mode. This study employed optical and metal engines to examine how boosting influences combustion and particulate emission formation in a spray-guided GDI (SGDI), single cylinder research engine. The setup of the optical and metal engines was identical except the optical engine allowed optical access through the piston and cylinder liner. The engines were operated in steady state mode at five different engine operating points representing various loads and speeds. The engines were boosted with compressed air and operated at three levels of boost, as well as atmospheric pressure for comparison.
Technical Paper

Experimental Investigation on the Influence of Boost on Emissions and Combustion in an SGDI-Engine Operated in Stratified Mode

2015-09-06
2015-24-2433
Among many techniques used for increasing fuel efficiency of a modern Gasoline Direct-Injected (GDI) engine are boosting and stratified operation. In modern downsized GDI engines, boosting is standard in order to achieve a high power output. Boosted GDI-engines have however mostly been operated in homogenous mode and little is known on the effects of operating a boosted GDI-engine in stratified mode. This paper presents the influence on combustion, standard emissions and particulate size distribution in a Spray-Guided, Gasoline, Direct-Injected (SGDI), single cylinder, research engine operated with various levels of boost. The engine was operated in steady state mode at five engine operating points of various load and speed. The engine was boosted with a Roots blower and operated at four levels of boost as well as atmospheric pressure for comparison. The engine was fueled with market gasoline (95 RON) blended with 10% ethanol.
Journal Article

Force Based Measurement Method for Cooling Flow Quantification

2017-03-28
2017-01-1520
Quantification of heat exchanger performance in its operative environment is in many engineering applications an essential task, and the air flow rate through the heat exchanger core is an important optimizing parameter. This paper explores an alternative method for quantifying the air flow rate through compact heat exchangers positioned in the underhood of a passenger car. Unlike conventional methods, typically relying on measurements of direct flow characteristics at discrete probe locations, the proposed method is based on the use of load-cells for direct measurement of the total force acting on the heat exchanger. The air flow rate is then calculated from the force measurement. A direct comparison with a conventional pressure based method is presented as both methods are applied on a passenger car’s radiator tested in a full scale wind tunnel using six different grill configurations. The measured air flow rates are presented and discussed over a wide range of test velocities.
Journal Article

Fuel Cell System Development: A Strong Influence on FCEV Performance

2018-04-03
2018-01-1305
In this article, the development challenges of a fuel cell system are explained using the example of the BREEZE! fuel cell range extender (FC-REX) applied in an FEV Liiona. The FEV Liiona is a battery electric vehicle based on a Fiat 500 developed by FEV. The BREEZE! system is the first applied 30 kW low temperature polymer electrolyte membrane (LT PEM) fuel cell system in the subcompact vehicle class. Due to the highly integrated system approach and dry cathode operation, a compact design of the range extender module with a system power density of 0.45 kW/l can be achieved so that the vehicle interior including trunk remains completely usable. System development for fuel cells significantly influences performance, efficiency, package, durability, and required maintenance effort of a fuel cell electric powertrain. In order to ensure safe and reliable operation, the fuel cell system has to be supplied with sufficient amounts of air, hydrogen, and coolant flows.
X