Refine Your Search

Topic

Author

Search Results

Technical Paper

3-D Modeling of Conventional and HCCI Combustion Diesel Engines

2004-10-25
2004-01-2964
An investigation of the possibility to extend the 3-dimensional modeling capabilities from conventional diesel to the HCCI combustion mode simulation was carried out. Experimental data was taken from a single cylinder engine operating with early injections for the HCCI and a split-injection (early pilot+main) for the high speed Diesel engine operation. To properly phase the HCCI mode in the experiments, high amounts of cooled EGR and a decreased compression ratio were used. In numerical simulation performed using KIVA3-V code, modified to incorporate the Detailed Chemistry Approach the same conditions were reproduced. Special attention is paid on the analysis of the events leading up to the auto-ignition, which was reasonably well predicted.
Technical Paper

48V Mild-Hybrid Architecture Types, Fuels and Power Levels Needed to Achieve 75g CO2/km

2019-04-02
2019-01-0366
48V mild hybrid powertrains are promising technologies for cost-effective compliance with future CO2 emissions standards. Current 48V powertrains with integrated belt starter generators (P0) with downsized engines achieve CO2 emissions of 95 g/km in the NEDC. However, to reach 75 g/km, it may be necessary to combine new 48V powertrain architectures with alternative fuels. Therefore, this paper compares CO2 emissions from different 48V powertrain architectures (P0, P1, P2, P3) with different electric power levels under various driving cycles (NEDC, WLTC, and RTS95). A numerical model of a compact class passenger car with a 48V powertrain was created and experimental fuel consumption maps for engines running on different fuels (gasoline, Diesel, E85, CNG) were used to simulate its CO2 emissions. The simulation results were analysed to determine why specific powertrain combinations were more efficient under certain driving conditions.
Technical Paper

A 1D Method for Transient Simulations of Cooling Systems with Non-Uniform Temperature and Flow Boundaries Extracted from a 3D CFD Solution

2015-04-14
2015-01-0337
The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
Technical Paper

A Method to Evaluate the Compression Ratio in IC Engines with Porous Thermal Barrier Coatings

2018-09-10
2018-01-1778
The compression ratio is an important engine design parameter. It determines to a large extend engine properties like the achievable efficiency, the heat losses from the combustion chamber and the exhaust losses. The same properties are affected by insulation of the combustion chamber. It is therefore especially important to know the compression ratio when doing experiments with thermal barrier coatings (TBC). In case of porous TBCs, the standard methods to measure the compression ratio can give wrong results. When measuring the compression ratio by volume, using a liquid, it is uncertain if the liquid fills the total porous volume of the coating. And for a thermodynamic compression ratio estimation, a model for the heat losses is needed, which is not available when doing experiments with insulation. The subject of this paper is the evaluation of an alternative method to assess the compression ratio.
Technical Paper

A Model of Turbocharged Engines as Dynamic Drivetrain Members

1993-11-01
933050
An engine model for use in computer simulation of transient behavior in drivetrain and vehicle systems is presented. Two elements, important for deviation (e.g. turbo-lag) from steady state characteristics, are the inertia of the supercharging unit (turbo shaft) and the fuel injection control system. No extensive combustion calculations are carried out within the model. Instead it uses condensed results from existing combustion models and measurements. The model is semi-empirical. Some of the engine specific properties needed for simulation are (e.g. for a turbocharged diesel): engine data in steady state operation, mappings of compressor and turbine performance, inertia of the engine components condensed to the crankshaft, turbo shaft inertia, displacement, compression ratio and the essentials of the fuel injection control strategy. Input parameters to the computer program based on the model are accelerator pedal position and external torque acting on the flywheel.
Technical Paper

A Numerical Investigation of Gas Exchange Modeling and Performance Prediction of a Camless Two-Stroke Hydrogen Engine

2023-04-11
2023-01-0232
Heavy-duty vehicles are primarily powered by diesel fuel, emitting CO2 emissions regardless of the exhaust after-treatment system. Contrastingly, a hydrogen engine has the potential to decarbonize the transportation sector as hydrogen is a carbon free, renewable fuel. In this study, a multi-physics 1D simulation tool (GT-Power) is used to model the gas exchange process and performance prediction of a two-stroke hydrogen engine. The aim is to establish a maximum torque-level for a four-stroke hydrogen engine and then utilize different methods for two-stroke modeling to achieve similar torque by optimizing the gas exchange process. A camless engine is used as base, enabling the flexibility to utilize approximately square valve lift profiles. The preliminary step is the GT-Power model validation, which has been done using diesel and hydrogen engines (single-cylinder heavy-duty) experiments at different operating points (871 rpm, 1200 rpm, 1259 rpm, and 1508 rpm).
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

2017-03-28
2017-01-0516
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Journal Article

CFD-Based Optimization of a Diesel-fueled Free Piston Engine Prototype for Conventional and HCCI Combustion

2008-10-06
2008-01-2423
This paper presents results of a parametric CFD modeling study of a prototype Free Piston Engine (FPE), designed for application in a series hybrid electric vehicle. Since the piston motion is governed by Newton's second law, accounting for the forces acting on the piston/translator, i.e. friction forces, electrical forces, and in-cylinder gas forces, having a high-level control system is vital. The control system changes the electrical force applied during the stroke, thus obtaining the desired compression ratio. Identical control algorithms were implemented in a MATLAB/SIMULINK model to those applied in the prototype engine. The ignition delay and heat release data used in the MATLAB/SIMULINK model are predicted by the KIVA-3V CFD code which incorporates detailed chemical kinetics (305 reactions among 70 species).
Technical Paper

CI Methanol and Ethanol combustion using ignition improver

2019-12-19
2019-01-2232
To act on global warming, CO2 emissions must be reduced. This will require a reduction in the use of fossil fuels for transportation. Because of the large quantities of fossil fuels used in transportation, sources of renewable fuels other than biomass will have to be explored, such as electrofuels synthesized from CO2 using renewable electricity. Potential electrofuels include methanol and ethanol, which have shown promising results in SI engines. However, their low cetane numbers make these fuels unsuitable for CI engines because of their poor auto-ignition qualities. The main objective of this study was to evaluate the viability of using methanol and ethanol in CI engines at compression ratios of 16.7 and 20 with a pilot-main injection strategy in the PPC/CI regime. Single cylinder engine tests on a heavy duty engine were performed under medium load conditions (1262 rpm and 172 Nm).
Technical Paper

Comparative Assessment of Zero CO2 Powertrain for Light Commercial Vehicles

2023-08-28
2023-24-0150
The transport sector is experiencing a shift to zero-carbon powertrains driven by aggressive international policies aiming to fight climate change. Battery electric vehicles (BEVs) will play the main role in passenger car applications, while diversified solutions are under investigation for the heavy-duty sector. Within this framework, Light Commercial Vehicles (LCVs) impact is not negligible and accountable for about 2.5% of greenhouse gas (GHG) emissions in Europe. In this regard, few LCV comparative assessments on green powertrains are available in the scientific literature and justified by the fact that several factors and limitations should be considered and addressed to define optimal powertrain solutions for specific use cases. The proposed research study deals with a comparative numerical assessment of different zero-carbon powertrain solutions for LCV. BEVs are compared to hydrogen-based fuel cells (FC) and internal combustion engines (ICE) powered vehicles.
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.
Technical Paper

Direct Gasoline Injection in the Negative Valve Overlap of a Homogeneous Charge Compression Ignition Engine

2003-05-19
2003-01-1854
An engine with variable valve timing was operated in homogeneous charge compression ignition (HCCI) mode. In two sets of experiments, the fuel was introduced directly into the combustion chamber using a split injection strategy. In the first set, lambda was varied while the fuel flow was constant. The second set consisted of experiments during which the fuel flow was altered and lambda was fixed. The results were evaluated using an engine simulation code with integrated detailed-chemistry. The auto-ignition temperature of the air-fuel mixture was reached when residual mass of the previous combustion cycle was captured using a negative valve overlap and compressed together with the fresh mixture charge inducted. When a pilot fuel amount was introduced in the combustion chamber before piston TDC, during the negative valve overlap, radicals were formed as well as intermediates and combustion took place during this overlap provided the mixture was lean.
Technical Paper

Dual Fuel Methanol and Diesel Direct Injection HD Single Cylinder Engine Tests

2018-04-03
2018-01-0259
Laws concerning emissions from heavy duty (HD) internal combustion engines are becoming increasingly stringent. New engine technologies are needed to satisfy these new requirements and to reduce fossil fuel dependency. One way to achieve both objectives can be to partially replace fossil fuels with alternatives that are sustainable with respect to emissions of greenhouse gases, particulates and nitrogen oxides (NOx). A suitable candidate is methanol. The aim of the study presented here was to investigate the possible advantages of combusting methanol in a heavy duty Diesel engine. Those are, among others, lower particulate emissions and thereby bypassing the NOx-soot trade-off. Because of methanol’s poor auto-ignition properties, Diesel was used as an igniting sources and both fuels were separately direct injected. Therefore, two separate standard common rail Diesel injection systems were used together with a newly designed cylinder head and adapted injection nozzles.
Technical Paper

Effect of Semi-Active Front Axle Suspension Design on Vehicle Comfort and Road Holding for a Heavy Truck

2012-09-24
2012-01-1931
Semi-active suspension systems for ground vehicles have been the focus of research for several years as they offer improvements in vehicle comfort and handling. This kind of suspension has attracted more interest compared to active suspension systems especially due to lower cost and energy consumption. In this paper the capabilities of a semi-active front axle suspension are investigated for a commercial vehicle. A half-truck model of a 4x2 tractor and semitrailer combination is developed in Matlab/Simulink for this purpose. Also, a 2 DOF roll plane model is considered to capture the roll motion of the vehicle body mass. Employing the above-mentioned models, results from on-off and continuous variable semi-active damping systems are compared to the ones from the passive suspension system according to ride comfort and handling safety characteristics.
Technical Paper

Effects of Multiple Injections on Engine-Out Emission Levels Including Particulate Mass from an HSDI Diesel Engine

2007-04-16
2007-01-0910
The effects of multiple injections on engine-out emissions from a high-speed direct injection (HSDI) diesel engine were investigated in a series of experiments using a single cylinder research engine. Injection sequences in which the main injection was split into two, three and four pulses were tested and the resulting emissions (NOx, CO HC and particulate matter), torque and cylinder pressures were compared to those obtained with single injections. Together with the number of injections, the effects of varying the dwell time were also investigated. It was found that dividing the main injection into two parts lowered the engine-out particulate and CO emissions and increased fuel efficiency. However, it also resulted in increased NOx emissions.
Technical Paper

Gasoline HCCI Modeling: An Engine Cycle Simulation Code with a Multi-Zone Combustion Model

2002-05-06
2002-01-1745
For the application to Gasoline Homogenous Charge Compression Ignition (HCCI) modeling, a multi-zone model was developed. For this purpose, the detailed-chemistry code SENKIN from the CHEMKIN library was modified. In a previous paper, the authors explained how piston motion and a heat transfer model were implemented in the SENKIN code to make it applicable to engine modeling. The single-zone model developed was successfully implemented in the engine cycle simulation code AVL BOOST™. A multi-zone model, including a crevice volume, a quench layer and multiple core zones, is introduced here. A temperature distribution specified over these zones gives this model a wider range of application than the single-zone model, since fuel efficiency, emissions and heat release can now be predicted more accurately. The SENKIN-BOOST multi-zone model predictions are compared with experimental data.
Technical Paper

HCCI Combustion Using Charge Stratification for Combustion Control

2007-04-16
2007-01-0210
This work evaluates the effect of charge stratification on combustion phasing, rate of heat release and emissions for HCCI combustion. Engine experiments in both optical and traditional single cylinder engines were carried out with PRF50 as fuel. The amount of stratification as well as injection timing of the stratified charge was varied. It was found that a stratified charge can influence combustion phasing, increasing the stratification amount or late injection timing of the stratified charge leads to an advanced CA50 timing. The NOx emissions follows the CA50 advancement, advanced CA50 timing leads to higher NOx emissions. Correlation between CA50 can also be seen for HC and CO emissions when the injection timing was varied, late injection and thereby advanced CA50 timing leads to both lower HC and CO emissions.
Technical Paper

Heavy Vehicle Wheel Housing Flows - a Parametric Study

2009-04-20
2009-01-1169
The drag from the underbody, including wheels and wheel housing, constitutes a significant amount of the total aerodynamic drag of heavy vehicles. A correct simulation of the underbody boundary conditions, including rotating wheels and moving ground, has turned out to be of great importance in the minimising of the aerodynamic drag. In the current study several front wheel housing design parameters have been evaluated using Computational Fluid Dynamics (CFD). Design concepts, like enclosed inner wheel housings, underbody panel and wheel housing ventilation, were evaluated by flow analysis and comparison of the drag force contribution. It was shown that changes to the wheel housing geometry had an important impact on the local flow field and force distribution. The total drag of the vehicle decreased with reduced wheel housing volume and wheel housing ventilation can reduce the aerodynamic drag significantly provided it is designed properly.
Technical Paper

Impact of Conventional and Electrified Powertrains on Fuel Economy in Various Driving Cycles

2017-03-28
2017-01-0903
Many technological developments in automobile powertrains have been implemented in order to increase efficiency and comply with emission regulations. Although most of these technologies show promising results in official fuel economy tests, their benefits in real driving conditions and real driving emissions can vary significantly, since driving profiles of many drivers are different than the official driving cycles. Therefore, it is important to assess these technologies under different driving conditions and this paper aims to offer an overall perspective, with a numerical study in simulations. The simulations are carried out on a compact passenger car model with eight powertrain configurations including: a naturally aspirated spark ignition engine, a start-stop system, a downsized engine with a turbocharger, a Miller cycle engine, cylinder deactivation, turbocharged downsized Miller engine, a parallel hybrid electric vehicle powertrain and an electric vehicle powertrain.
Technical Paper

Injection Orifice Shape: Effects on Combustion and Emission Formation in Diesel Engines

1997-10-01
972964
A series of experimental studies of diesel spray combustion was carried out using non-circular and back-step orifices. The experiments were performed in a single-cylinder engine and in a constant volume combustion chamber. In the engine tests, elliptic orifices with an aspect ratio of approximately 2:1 were compared with circular orifices. The elliptic orifices had sharp inlets and the circular orifices had rounded inlets. Elliptic orifices aligned with either the minor axis or the major axis in the direction of the nozzle tip were tested. The orifice shapes had minor effects on the heat release, ignition delay, and emissions of smoke, CO and HC. However, substantial differences were observed for emissions of NOx: for the vertical elliptic orifices, emissions up to 37.6 percent lower than with circular orifices were observed. In the combustion bomb tests, rectangular and back-step orifices were compared with circular orifices, all with sharp inlets.
X