Refine Your Search

Topic

Author

Search Results

Technical Paper

42LE Electronic Four-Speed Automatic Transaxle

1993-03-01
930671
A new electronically controlled transaxle has been put into production for Chrysler's family of LH cars. Among the attributes of this new transaxle are its ability to handle engines of high torque and high power coupled with high-speed shifts. Engine torque management is used in specific operating regimes. A feature of the transaxle is electronic modulation of the converter clutch. A number of logic features have been combined with hardware to provide good performance and shift quality over a wide operating range. An output transfer chain and a hypoid gear set are used to provide torque to the front wheels in a longitudinal power train orientation. Obtaining acceptable endurance life of the hypoid gears within an aluminum housing presented a significant challenge. New approaches were required to provide a chain-sprocket system with acceptable noise characteristics.
Technical Paper

Architecture and Operation of the HIP7010 J1850 Byte-Level Interface Circuit

1995-02-01
950035
As a cost effective solution to making microcontroller based systems “J1850[1] aware”, a peripheral device (the HIP7010) was developed to extend the capabilities of standard microcontrollers. From the perspective of the Host, the peripheral device handles J1850 messages as a series of bytes (similar in concept to a universal asynchronous receiver/transmitter [UART]). The architecture of the HIP7010 is discussed. The design of the J1850 interface, state machine, status/control blocks, cyclical redundancy check (CRC) hardware, host interface, and fail-safe features are detailed. Illustrations are provided of: Host/HIP7010 interfacing; message transmission and reception; error handling; and In-Frame Response (IFR) generation.
Technical Paper

Body-in-White Prototype Process in Chrysler's Jeep/Truck Platform

1993-11-01
933038
Chrysler Corporation's Jeep and Truck platform implemented a new design and prototype process for the body-in -white of a new pickup truck. A team approach achieved concurrent body design, stamping die design, assembly process development, and assembly tooling development. The first domestic US industry use of a 100% electronic design and release system was instrumental in the process. The new process produced a prototype body-in-white on time at 95 WBVP (weeks before volume production) with the highest level of production-intent components ever achieved within Chrysler at this stage of development.
Technical Paper

Characterization of Lunar Surfaces and Concepts of Manned Lunar Roving Vehicles

1963-01-01
630078
This paper discusses the development of criteria necessary to establish reliable lunar exploration and construction vehicle concepts. To establish the basis for the development of these criteria, an exploration mission using the presently conceived Apollo launch vehicle system is described. The criteria resulting from the study of the contribution made by the hostile lunar environment and the life support system requirements within the framework of the selected mission are established. Soils testing in a hard vacuum is described, as are tests of models under simulated lunar terrain environment. Two lunar vehicle configurations are reviewed, including design parameters and subsystem development.
Technical Paper

Chrysler 8.0-Liter V-10 Engine

1993-11-01
933033
Chrysler Corporation has developed an 8.0-liter engine for light truck applications. Numerous features combine to produce the highest power and torque ratings of any gasoline-fueled light truck engine currently available while also providing commensurate durability. These features include: a deep-skirt ten-cylinder 90° “V” block, a Helmholtz resonator intake manifold that enhances both low and mid-range torque, light die cast all-aluminum pistons for low vibration, a unique firing order for smooth operation, a “Y” block configuration for strength and durability, a heavy duty truck-type thermostat to control warm up, and a direct ignition system.
Technical Paper

Chrysler Collision Detection (C2D™) Bus Interface, Integrated Circuit User Manual

1988-02-01
880586
Some of Chrysler's 1988 model year vehicles contain a serial bus. This paper discusses its implementation and general usage. It describes a type of bus that was designed for smart modules to be able to cost effectively transfer data within an automotive environment. This paper is a sixty plus page users manual describing how to use both the Chrysler's C2D* bus and the C2D chip. This manual contains descriptions of the vehicle system, the information usage, the message formats, the hardware interfacing requirements, the bus speed, and the C2D chip functions. The SAE Multiplex Subcommittee is currently attempting to standardize this type of bus via SAE J1850. However, until this happens, Chrysler will continue to develop, improve, and use this bus, since it exists now! Even though this bus was designed for automotive usage, it has many other possible industry applications, especially within noisy environments. Thus, after understanding the bus, other industries may become interested.
Technical Paper

Chrysler Evaporation Control System The Vapor Saver for 1970

1970-02-01
700150
A system for controlling gasoline evaporation losses from 1970 model Chrysler Corp. cars and light trucks was developed, certified for sale in California, and put into production. Evaporation losses from both the carburetor and the fuel tank are conducted to the engine crankcase for storage while the engine is shut down. The vapors are removed from the crankcase and utilized in the combustion process during subsequent vehicle operation. Particularly interesting in this unique, no-moving parts system, are the reliability and durability, and the vapor-liquid separator “standpipe.”
Technical Paper

Chrysler Torque Flite Transmission

1958-01-01
580018
THIS paper describes the Chrysler TorqueFlite transmission, a 3-speed unit with torque converter. The discussion includes details of the push-button controls of the automatic transmission, operation of the transmission and hydraulic controls, power transmission through the gearbox, and design of several of the components. The authors think that the TorqueFlite offers to a greater degree the advantages of automatic transmission: ease of operation and maximum power over a wide range of car speeds.
Technical Paper

Chrysler's New Front Wheel Drive Automatic Transmission

1979-02-01
790018
A new three-speed automatic transmission has been designed, developed and is being produced in the U.S. by the Chrysler Corporation for its new family of front wheel drive vehicles. The transmission was designed around the Chrysler-proven TorqueFlite concept. The features of the new transmission include a “folded” construction for installation in a transverse power train. The case is a one-piece aluminum die cast housing and contains the final drive and differential unit. This paper describes the design and development of this new automatic transmission.
Technical Paper

Comparison of Energy Management Materials for Head Impact Protection

1997-02-24
970159
Energy management materials are widely used in automotive interiors in instrument panel, knee bolster, and door absorber applications to reduce the risk of injury to an occupant during a crash. Automobile manufacturers must meet standards set by the National Highway Traffic Safety Administration (NHTSA) that identify maximum levels of injury to an occupant. The recent NHTSA upgrade to the Federal Motor Vehicle Safety Standard (FMVSS) 201 test procedure(1) for upper interior head impact protection has prompted energy management materials' use in several new areas of affected vehicles. While vehicle evaluations continue, results to date show that energy management foams can be effective in reducing the head injury criterion [HIC(d)] to acceptable government and OEM levels.
Technical Paper

Design Features of the JUNKERS 211B AIRCRAFT ENGINE

1942-01-01
420123
THE Junkers 211B engine follows the usual German practice of very large displacements and conservative mean effective pressures and rotative speeds. However, the relative light weight per unit of displacement results in a net weight per horsepower that is not far above its competitors. Fully automatic devices which control propeller speed, manifold pressure, mixture ratio, spark advance, and supercharger gear ratio follow the German policy of removing all possible distractions from the pilot. This is one of three large liquid-cooled engines known to be produced in quantity in Germany; it powers an impressive percentage of the Luftwaffe. While of external appearance and displacement that resemble the Daimler-Benz DB-601 engine, the fundamental construction, detail design practice, and metallurgy of the Junkers 211B are surprisingly different.
Technical Paper

Design and Selection Factors for Automatic Transaxle Tapered Roller Bearings

1992-02-01
920609
Tapered roller bearings have proven successful in a number of high-volume automatic transaxle designs. Typically, tapered roller bearings are required to carry high loads generated by helical and hypoid gears. To meet the demands of a successful design, a number of factors must be considered in the selection and application of tapered roller bearings. This paper presents a discussion of these factors as well as results from Chrysler's transaxle testing. Selection of tapered roller bearings is based on the transmission duty cycle developed using load and speed histograms, gear data, size constraints, and life requirements. A bearing life analysis considering the total transaxle system is conducted using a sophisticated computer program. Various system effects are analyzed including the load/speed cycle, housing and shaft rigidity, lubrication, bearing setting, thermal effects, and bearing internal design.
Technical Paper

Development of a Rubber-Like Headform Skin Model for Predicting the Head Injury Criterion (HIC)

1995-02-01
950883
This paper describes the development of a rubber-like skin Finite Elements Model (FEM) for the Hybrid III headform and an experimental method to determine its material properties. The finite element modeling procedures, using material parameters derived from tests conducted on the headform skin (rubber) material, are described. Dynamic responses and computations of HIC using the developed headform model show that an Elastic-Plastic Hydrodynamic (EPH) material model of the rubber can be used for headform impact simulations. The results obtained from the headform simulation using an EPH rubber material model and drop tower tests of the headform on both a rigid and a deformable structure will be compared, in order to show the applicability of the EPH model.
Technical Paper

Developments in Dynamometer Control Methods

1972-02-01
720453
The application of automation to dynamometer testing of engines has led to the development of specialized circuits and techniques to compensate for limitations inherent within the electromechanical systems used to implement automation theory. Stable, quick response to a programmed speed change has been achieved for engine-automatic transmission testing by the use of a parallel feedback technique. Vehicle simulation using analog computer circuitry and road test data is used to calculate torque requirements from programmed acceleration-time and velocity-time curves. Similar circuitry is used to calculate engine-transmission output torque from dynamometer parameters.
Technical Paper

Diesel Flex Plate Development Process

1993-11-01
932981
Basic procedures are described for the design and development of flexible drive plates that couple automatic transmissions to engines. An innovative combination of analysis and test techniques were employed during the development of a drive plate for a turbocharged diesel truck engine when premature failures occurred. FEA (finite element analysis) was expanded from use as a preliminary design tool to the prediction of high stress conditions and the loading that caused them. A laboratory test was developed to rapidly assess drive plate design changes based on these FEA predictions.
Technical Paper

Digital Recording of Vehicle Crash Data

1981-06-01
810810
This paper discusses the development and implementation of a 16 channel data acquisition system for high “G” impact testing which includes a self-contained, on-board data acquisition unit, a programmer-exerciser and debriefing subsystems. The microprocessor controlled, on-board unit contains all signal conditioning, A/D conversion hardware and logic to store 4K 12 bit samples of data per channel. This unit will debrief into an oscilloscope, a desk-top computer or a large disk-based minicomputer system. Advantages over previous systems include the elimination of costly hardware (such as umbilical cables and recorders), and a reduction in pre-test preparation and data processing time.
Technical Paper

Dodge Ram Pickup Vehicle: From Human Factors Development to Production Intent Metal Assembly

1993-11-01
932988
To evaluate and refine interior architecture of the new Dodge Ram pickup truck three years before production, a road worthy interior package validation buck was built using a fiberglass body shell. Molds for the shell were made using CAD/CAM techniques. Advanced CAD/CAM techniques were used to build the interior buck of a subsequent model from individual panels molded in carbon fiber. This buck also included inner structural panels and interior trim components taken from CAD data. For this and subsequent new vehicle programs, refinement of construction techniques allows the bucks to serve as aids in product design and manufacturing feasibility studies.
Technical Paper

Energy and the Automobile - General Factors Affecting Vehicle Fuel Consumption

1973-02-01
730518
Since 1968, vehicle weight increases and emissions controls have reduced fuel economy substantially. Additional losses in economy and acceleration will be experienced through 1976. Recommendations are made to lessen the impact of the predicted losses. Factors influencing fuel economy and acceleration are examined for an intermediate car. Changes in engine efficiency and displacement, compression ratio, torque converter, transmission, axle ratio, aerodynamic drag, tires, accessories, vehicle weight, and emissions controls are examined. When practical, the effects of 10% changes are analyzed. Comparisons are also made with a subcompact and a luxury vehicle.
Technical Paper

Energy-Absorbing Polyurethane Foam to Improve Vehicle Crashworthiness

1995-02-01
950553
Federal legislation mandates that automotive OEMS provide occupant protection in collisions involving front and side impacts This legislation, which is to be phased-in over several years, covers not only passenger cars but also light-duty trucks and multipurpose passenger vehicles (MPVs) having a gross vehicle weigh rating (GVWR) of 8,500 lb (3,850 kg) or less. During a frontal impact, occupants within the vehicle undergo rapid changes in velocity. This is primarily due to rapid vehicle deceleration caused by the rigid nature of the vehicle's metal frame components and body assembly. Many of today's vehicles incorporate deformable, energy-absorbing (EA) structures within the vehicle structure to manage the collision energy and slow the deceleration which in turn can lower the occupant velocity relative to the vehicle. Occupant velocities can be higher in light-duty trucks and MPVs having a full-frame structure resulting in increased demands on the supplemental restraint system (SRS).
X