Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Modeling of AC Refrigerant Loop and Vehicle Cabin to Simulate Soak and Cool Down

2013-04-08
2013-01-1502
Simulation has become an integral part in the design and development of an automotive air-conditioning (AC) system. Simulation is widely used for both system level and component level analyses and are carried out with one-dimensional (1D) and Computational Fluid Dynamics (CFD) tools. This paper describes a 1D approach to model refrigerant loop and vehicle cabin to simulate the soak and cool down analysis. Soak and cool down is one of the important tests that is carried out to test the performance of a heating, ventilation and air-conditioning (HVAC) system of a vehicle. Ability to simulate this cool down cycle is thus very useful. 1D modeling is done for the two-phase flow through the refrigerant loop and air flow across the heat exchangers and cabin with the commercial software AMESim. The model is able to predict refrigerant pressure and temperature inside the loop at different points in the cycle.
Technical Paper

2013 SRT Viper Carbon Fiber X-Brace

2013-04-08
2013-01-1775
The 2013 SRT Viper Carbon Fiber X-Brace, styled by Chrysler's Product Design Office (PDO), is as much of a work of art as it is an engineered structural component. Presented in this paper is the design evolution, development and performance refinement of the composite X-Brace (shown in Figure 1). The single-piece, all Carbon Fiber Reinforced Plastic (CFRP) X-Brace, an important structural component of the body system, was developed from lightweight carbon fiber material to maximize weight reduction and meet performance targets. The development process was driven extensively by virtual engineering, which applied CAE analysis and results to drive the design and improve the design efficiency. Topology optimization and section optimization were used to generate the initial design's shape, form and profile, while respecting the package requirements of the engine compartment.
Technical Paper

3 Load Cell Tumble Meter Development

2008-12-02
2008-01-3004
This paper will describe the development of the 3-load cell tumble meter. This is a new method for measuring the tumble component of in-cylinder mixture motion. In-cylinder mixture motion is an important parameter for understanding and improving combustion stability of piston engines.
Technical Paper

A Case Study in Structural Optimization of an Automotive Body-In-White Design

2008-04-14
2008-01-0880
A process for simultaneously optimizing the mechanical performance and minimizing the weight of an automotive body-in-white will be developed herein. The process begins with appropriate load path definition though calculation of an optimized topology. Load paths are then converted to sheet metal, and initial critical cross sections are sized and shaped based on packaging, engineering judgment, and stress and stiffness approximations. As a general direction of design, section requirements are based on an overall vehicle “design for stiffness first” philosophy. Design for impact and durability requirements, which generally call for strength rather than stiffness, are then addressed by judicious application of the most recently developed automotive grade advanced high strength steels. Sheet metal gages, including tailored blanks design, are selected via experience and topometry optimization studies.
Journal Article

A Cloud-Based Simulation and Testing Framework for Large-Scale EV Charging Energy Management and Charging Control

2022-03-29
2022-01-0169
The emerging need of building an efficient Electric Vehicle (EV) charging infrastructure requires the investigation of all aspects of Vehicle-Grid Integration (VGI), including the impact of EV charging on the grid, optimal EV charging control at scale, and communication interoperability. This paper presents a cloud-based simulation and testing platform for the development and Hardware-in-the-Loop (HIL) testing of VGI technologies. Although the HIL testing of a single charging station has been widely performed, the HIL testing of spatially distributed EV charging stations and communication interoperability is limited. To fill this gap, the presented platform is developed that consists of multiple subsystems: a real-time power system simulator (OPAL-RT), ISO 15118 EV Charge Scheduler System (EVCSS), and a Smart Energy Plaza (SEP) with various types of charging stations, solar panels, and energy storage systems.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Comparative Study of Fuel Cell Prediction Models Based on Relevance Vector Machines with Different Kernel Functions

2021-04-06
2021-01-0728
Fuel cell reactors, as the core components of fuel cell vehicles, have a short life problem that has always limited the development of fuel cell vehicles. The life attenuation curve of fuel cell shows nonlinear characteristics, and there is no model that can accurately predict its effect. This paper is based on the experimental data of the vehicle fuel cell reactor, which is derived from the 600 h durability test run by a 4 kW fuel cell reactor. The relevance vector machine, as a Bayes processing method that supports vector machine, is a data-driven method based on kernel functions. The regression model is established by the relevance vector machine, and the super-parameters are found by genetic algorithm, because the kernel function strongly affects the nonlinearity of the curve, and the decay curve of fuel cell reactor performance is predicted according to four different kernel functions.
Technical Paper

A Comparative Study of Hydraulic Hybrid Systems for Class 6 Trucks

2013-04-08
2013-01-1472
In order to reduce fuel consumption, companies have been looking at hybridizing vehicles. So far, two main hybridization options have been considered: electric and hydraulic hybrids. Because of light duty vehicle operating conditions and the high energy density of batteries, electric hybrids are being widely used for cars. However, companies are still evaluating both hybridization options for medium and heavy duty vehicles. Trucks generally demand very large regenerative power and frequent stop-and-go. In that situation, hydraulic systems could offer an advantage over electric drive systems because the hydraulic motor and accumulator can handle high power with small volume capacity. This study compares the fuel displacement of class 6 trucks using a hydraulic system compared to conventional and hybrid electric vehicles. The paper will describe the component technology and sizes of each powertrain as well as their overall vehicle level control strategies.
Technical Paper

A Comparison Study of Car-to-Pedestrian and Car-to-E-Bike Accidents: Data Source: The China In-Depth Accident Study (CIDAS)

2014-04-01
2014-01-0519
The aim of the study was to investigate the difference between car-to-e-bikes and car-to-pedestrian accidents. The China In-depth Accident Study (CIDAS) database was searched from 2011 to 2013 for pedestrians and e-bikes struck by car, van and SUV fronts, which resulted in 104 pedestrian and 85 e-bike cases where information was sufficient for in-depth analysis. Reconstruction by PC-Crash was performed for all of the sampled cases. Pre-crash parameters were calculated by a MATLAB code. Focus was on prototypical accident scenarios and causes; speed as well as possible prevention countermeasures. It has been shown that traffic light violations, road priority violations, and unsure safety (these situations included misjudgments, unpreparedness, proximity to other road users, inappropriate speeds, etc.…) are the main causes in both the VRU groups. Distinctions were found for aspects of car collision speed, accident scenario, distribution of head contact points and so on.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
Journal Article

A Data Driven Fuel Cell Life-Prediction Model for a Fuel Cell Electric City Bus

2021-04-06
2021-01-0739
Life prediction is a major focus for a commercial fuel cell stack, especially applied in fuel cell electric vehicles (FCEV). This paper proposes a data driven fuel cell lifetime prediction model using particle swarm optimized back-propagation neural network (PSO-BPNN). For the prediction model PSO-BP, PSO algorithm is used to determine the optimal hyper parameters of BP neural network. In this paper, total voltage of fuel cell stack is employed to represent the health index of fuel cell. Then the proposed prediction model is validated by the aging data from PEMFC stack in FCEV at the actual road condition. The experimental results indicate that PSO-BP model can predict the voltage degradation of PEMFC stack at actual road condition precisely and has a higher prediction accuracy than BP model.
Technical Paper

A Design for Six Sigma Approach to Optimize a Front-Wheel-Drive Transmission for Improved Efficiency and Robustness

2011-04-12
2011-01-0720
Environmental concerns and government regulations are factors that have led to an increased focus on fuel economy in the automotive industry. This paper identifies a method used to improve the efficiency of a front-wheel-drive (FWD) automatic transmission. In order to create improvements in large complex systems, it is key to have a large scope, to include as much of the system as possible. The approach taken in this work was to use Design for Six Sigma (DFSS) methodology. This was done to optimize as many of the front-wheel-drive transmission components as possible to increase robustness and efficiency. A focus of robustness, or consistency in torque transformation, is as important as the value of efficiency itself, because of the huge range of usage conditions. Therefore, it was necessary to find a solution of the best transmission component settings that would not depend on specific usage conditions such as temperatures, system pressures, or gear ratio.
Journal Article

A Fatigue Life Estimation Technique for Body Mount Joints

2012-04-16
2012-01-0733
A body mount joint is a typical clamped joint that is under severe loading conditions, due to its structural function services as a gateway of load path between body and frame of an automotive vehicle. Stresses/strains on durability concerned components at the joint cannot be captured accurately by using the pseudo stress analysis approach because of the complexity of stress state generated by the pre-stress from clamp load, contacts between the components and nonlinear material properties. In this paper, development of a technique for fatigue life estimation of the joint is described in detail.
Technical Paper

A HiL Test Bench for Monocular Vision Sensors and Its Applications in Camera-Only AEBs

2019-04-02
2019-01-0881
This paper presents a HiL test bench specifically designed for closed-loop testing of the monocular-vision based ADAS sensors, whereby the animated pictures of the virtual scene is calibrated and projected onto a 120-degree circular screen, such that the camera sensor installed has the same vision as the observation of the real-world scene. A high-fidelity AEBs model is established and deployed in the real-time target of the HiL system, making intervention decisions based on the instance-level detection information transmitted from the physical sensor. By referring to the 2018 edition of the C-NCAP testing protocol, the HiL tests of the rear-end collision scenarios is performed to investigate the performance and characteristics of the longitudinal-motion sensing of the sensor sample under test.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Technical Paper

A Least-Cost Method for Prioritizing Battery Research

1983-02-01
830221
A methodology has been developed for identifying the combination of battery characteristics which lead to least-cost electric vehicles. Battery interrelationships include specific power vs, specific energy, peak power vs. specific energy and DOD, cycle life vs. DOD, cost vs. specific energy and peak power, and volumetric and battery size effects. The method is illustrated for the “second car” mission assuming lead/acid batteries. Reductions in life-cycle costs associated with future battery research breakthroughs are estimated using a sensitivity technique. A research prioritization system is described.
Journal Article

A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

2018-04-03
2018-01-0190
A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover optimum designs using training data generated from multi-dimensional simulations. Machine learning (ML) presents a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. In the present work, a total of over 2000 sector-mesh computational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) mode. A total of nine input parameters were varied, and the CFD simulation cases were generated by randomly sampling points from this nine-dimensional input space. These input parameters included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic conditions at intake valve closure (IVC).
Technical Paper

A Mesoscopic-Stress Based Fatigue Limit Theory - A Revised Dang Van's Model

2014-04-01
2014-01-0902
Dang Van (Dang Van et al., 1982 and Dang Van, 1993) states that for an infinite lifetime (near fatigue limit), crack nucleation in slip bands may occur at the most unfavorable oriented grains, which are subject to plastic deformation even if the macroscopic stress is elastic. Since the residual stresses in these plastically deformed grains are induced by the restraining effect of the adjacent grains, it is assumed that the residual stresses are stabilized at a mesoscopic level. These stresses are currently approximated by the macroscopic hydrostatic stress defined by the normal stresses to the faces of an octahedral element oriented with the faces symmetric to the principal axis; mathematically they are equal to each other and they are the average of the principal stresses.
Technical Paper

A Method for Obtaining Optimum Fuel Economy Performance using Transient Combustion Measurements

2009-04-20
2009-01-0243
An experiment was conducted testing a powertrain package consisting of a four cylinder four valve engine coupled to a four speed automatic transmission in a dynamometer test cell. Cylinder pressure transducers, an encoder, and other instrumentation were used to measure transient combustion events. The transient cycle chosen for testing was a Cold 80 of the Federal Test Procedure (FTP) that produces a standardized fuel economy value. After analyzing the combustion events, a determination was made between the spark advance delivered and a revised spark advance for optimum combustion efficiency. Based upon the relationship between spark advance and fuel consumption, a prediction for the improved fuel consumption was made. The testing was then repeated to evaluate the revised spark advance and the fuel economy benefits in comparison to the predicted values.
X