Refine Your Search

Topic

Author

Search Results

Technical Paper

3-D Multiphase Flow Simulation of Coolant Filling and Deaeration Processes in an Engine Coolant System

2024-01-16
2024-26-0310
The thermal performance of an engine coolant system is efficient when the engine head temperature is maintained within its optimum working range. For this, it is desired that air should not be entrapped in the coolant system which can lead to localized hot spots at critical locations. However, it is difficult to eliminate the trapped air pockets completely. So, the target is to minimize the entrapped air as much as possible during the coolant filling and deaeration processes, especially in major components such as the radiator, engine head, pump etc. The filling processes and duration are typically optimized in an engine test stand along with design changes for augmenting the coolant filling efficiency. However, it is expensive and time consuming to identify air entrapped locations in tests, decide on the filling strategy and make the design changes in the piping accordingly.
Technical Paper

Alternate Approach: Acoustics and Cooling Performance Management

2018-04-03
2018-01-0084
Development of quick and efficient numerical tools is key to the design of industrial machines. While Computational Fluid Dynamics (CFD) techniques based on Navier Stokes (N-S) and Lattice Boltzman methods are becoming popular, predicting aeroacoustic behavior for complex geometries remains computationally intensive for design process and iteration. The goal of this paper is to evaluate application Navier-Stokes approach coupled with Ffowcs Williams and Hawkings (FW-H), and Broad-band Noise Model (BNS) to evaluate noise levels and predict design direction for industrial applications. Steady-state RANS based approaches are used to evaluate under-hood cooling performance and fan power demand. At each design iteration, noise levels and strength of noise source are evaluated using Gutin’s and broad-band noise models, respectively along with cooling performance. Each design feature selected for the final design has lower fan power and noise level with improved cooling.
Technical Paper

An Approach for Incorporating Learning into System Design: System Level Assessment Methodology

2023-09-05
2023-01-1517
Shafaat and Kenley in 2015 identified the opportunity to improve System Engineering Standards by incorporating the design principle of learning. The System Level Assessment (SLA) Methodology is an approach that fulfills this need by efficiently capturing the learnings of a team of subject matter experts in the early stages of product system design. By gathering expertise, design considerations are identified that when used with market and business requirements improve the overall quality of the product system. To evaluate the effectiveness of this approach, the methodology has been successfully applied over 400 times within each realm of the New Product Introduction process, including most recently to a Technology Development program (in the earliest stages of the design process) to assess the viability of various electrification technologies under consideration by an automotive Tier 1 supplier.
Journal Article

An Evaluation of an Unhealthy Part Identification Using a 0D-1D Diesel Engine Simulation Based Digital Twin

2022-03-29
2022-01-0382
Commercial automotive diesel engine service and repair, post a diagnostic trouble code trigger, relies on standard troubleshooting steps laid down to identify or narrow down to a faulty engine component. This manual process is cumbersome, time-taking, costly, often leading to incorrect part replacement and most importantly usually associated with significant downtime of the vehicle. Current study aims to address these issues using a novel in-house simulation-based approach developed using a Digital Twin of the engine which is capable of conducting in-mission troubleshooting with real world vehicle/engine data. This cost-effective and computationally efficient solution quickly provides the cause of the trouble code without having to wait for the vehicle to reach the service bay. The simulation is performed with a one-dimensional fluid dynamics, detailed thermodynamics and heat transfer-based diesel engine model utilizing the GT-POWER engine performance tool.
Technical Paper

Analysis Lead Drivability Assessment

2015-09-29
2015-01-2804
Drivability and powertrain refinement continue to gain importance in the assessment of overall vehicle quality. This notion has transcended its light duty origins and is beginning to gain considerable traction in the medium and heavy duty markets. However, with drivability assessment and refinement also comes the high costs associated with vehicle testing, including items such as test facilities, prototype component evaluation, fuel and human resources. Taking all of this into account, any and all measures must be used to reduce the cost of drivability evaluation and powertrain refinement. This paper describes an analysis based co-simulation methodology, where sophisticated powertrain simulation and objective drivability evaluation tools can be used to predict vehicle drivability. A fast running GT power engine model combined with simplified controls representation in Matlab/Simulink was used to predict engine transients and responses.
Technical Paper

Analysis and Design Validation of Medium Duty Truck Cooling System

2016-09-27
2016-01-8073
Various 1D simulation tools (KULI & LMS Amesim) and 3D simulation tools (ANSYS FLUENT®) can be used to size and evaluate truck cooling system design. In this paper, ANSYS FLUENT is used to analyze and validate the design of medium duty truck cooling systems. LMS Amesim is used to verify the quality of heat exchanger input data. This paper discusses design and simulation of parent and derivative trucks. As a first step, the parent truck was modeled in FLUENT (using standard' k - ε model) with detailed fan and underhood geometry. The fan is modeled using Multiple Reference Frame (MRF) method. Detailed geometry of heat exchangers is skipped. The heat exchangers are represented by regular shape cell zones with porous medium and dual cell heat exchanger models to account for their contributions to the entire system in both flow and temperature distribution. Good agreement is observed between numerical and experimental engine out temperatures at different engine operating conditions.
Journal Article

Analytic Solution for the Flow Distribution and Pressure Drop of Ceramic Partially-Plugged Wall Flow Diesel Particulate Filters

2015-04-14
2015-01-1056
A 1-dimensional analytic solution has been developed to evaluate the pressure drop and filtration performance of ceramic wall-flow partial diesel particulate filters (PFs). An axially resolved mathematical model for the static pressure and velocity profiles prevailing inside wall-flow filters, with such unique plugging configurations, is being proposed for the first time. So far, the PF models that have been developed are either iterative/numerical in nature [1], or based on commercial CFD packages [7]. In comparison, an analytic solution approach is a transparent and computationally inexpensive tool that is capable of accurately predicting trends as well as, offering explanations to fundamental performance behavior. The simple mathematical expressions that have been obtained facilitate rational decision-making when designing partial filters, and could also reduce the complexity of OBD logic necessary to control onboard filter performance.
Technical Paper

Analytical Evaluation of Integrated Drivetrain NVH Phenomena

2015-09-29
2015-01-2781
This paper demonstrates the use of a system level model that includes torsional models of a Cummins diesel engine and an Allison transmission to study and improve system NVH behavior. The study is a case where the two suppliers of key powertrain components, Cummins Inc. and Allison Transmission Inc., have collaborated to solve an observed NVH problem for a vehicle customer. A common commercial tool, Siemens' AMESim, was used to develop the drivetrain torsional system model. This paper describes a method of modelling and calibration of baseline engine and transmission models to identify the source of vibration. Natural frequencies, modal shapes, and forced response were calculated for each vehicle drive gear ratio to study the torsional vibration. Several parametric studies such as damping, inertia, and stiffness were carried out to understand their impact on torsional vibration of the system.
Technical Paper

Application of Artificial Neural Networks to Aftertreatment Thermal Modeling

2012-04-16
2012-01-1302
Accurate estimation of catalyst bed temperatures is very crucial for effective control and diagnostics of aftertreatment systems. The architecture of most aftertreatment systems contains temperature sensors for measuring the exhaust gas temperatures at the inlet and outlet of the aftertreatment systems. However, the temperature that correctly reflects the temperature of the chemical reactions taking place on the catalyst surface is the catalyst bed temperature. From the Arrhenius relationship which governs the chemical reaction kinetics occurring in different aftertreatment systems, the rate of chemical reaction is very sensitive to the reaction temperature. Considerable changes in tailpipe emissions can result from small changes in the reaction temperature and robust emissions control systems should be able to compensate for these changes in reaction temperature to achieve the desired tailpipe emissions.
Technical Paper

Application of Machine Learning to Engine Air System Failure Prediction

2024-04-09
2024-01-2007
With the capability of avoiding failure in advance, failure prediction model is important not only to end users, but also to the service engineers in vehicle industry. This paper proposes an approach based on anomaly detection algorithms and telematic data to predict the failure of the engine air system with Turbo charger. Firstly, the relationship between air system and all obtained features are analyzed by both physical mechanism and data-wise. Then, the features including altitude, air temperature, engine output power, and charger pressure are selected as the input of the model, with the sampling interval of 1 minute. Based on the selected features, the healthy state for each vehicle is defined by the model as benchmark. Finally, the ‘Medium surface’ is determined for specific vehicle, which is a hyperplane with the medium points of the healthy state located at, to detect the minor weakness symptom (sub-health state).
Technical Paper

Assessment of Condensation Particle Counter-Based Portable Solid Particle Number System for Applications with High Water Content in Exhaust

2024-04-22
2024-01-5048
The Particle Number–Portable Emission Measurement System (PN-PEMS) came into force with Euro VI Phase E regulations starting January 1, 2022. However, positive ignition (PI) engines must comply from January 1, 2024. The delay was due to the unavailability of the PN-PEMS system that could withstand high concentrations of water typically present in the tailpipe (TP) of CNG vehicles, which was detrimental to the PN-PEMS systems. Thus, this study was designed to evaluate the condensation particle counter (CPC)-based PN-PEMS measurement capabilities that was upgraded to endure high concentration of water. The PN-PEMS measurement of solid particle number (SPN23) greater than 23 nm was compared against the laboratory-grade PN systems in four phases. Each phase differs based upon the PN-PEMS and PN system location and measurements were made from three different CNG engines. In the first phase, systems measured the diluted exhaust through constant volume sampler (CVS) tunnel.
Technical Paper

Cooling Fan Selection in Power Car Application Using CFD and FEA Analysis

2019-04-02
2019-01-0900
This paper describes the methodology used to select an application-based fan that has optimum operating characteristics in terms of cooling air flow rate, fan power, and noise. The selected fan is then evaluated for structural strength. To evaluate different fans, complete rail coach under-hood simulations were carried out using steady-state 3D computational fluid dynamics (CFD) approach. These simulations considered an actual, highly non-uniform flow field. For each fan option, fan power, air flow rate, and surface acoustic power was evaluated. Pressure profiles on the fan blades were studied to assess the effect of non-uniform downstream air passage designs. Surface acoustic power was calculated using broadband noise source (BNS) model in ANSYS Fluent®. Surface pressure profiles over fan blades imported from 3D CFD were used in finite element analysis (FEA) in ANSYS. Analyses were carried out for blade linear and non-linear properties.
Technical Paper

Correlation of Cylinder Head Gasket Sealing Analysis Results between Gasket Element and 3D Continuum Element

2020-03-10
2020-01-0049
A head gasket is a component that sits between the engine block/liner and cylinder head(s) in an internal combustion engine. Its purpose is to seal high pressure combustion gasses in the cylinders and to seal coolant and engine oil. It is the most critical sealing application in an engine. As a general practice, the load deflection(L/D) characteristic is generated by the gasket manufacturer for edge molded or composite gasket types. However, in the case of a solid-sheet metallic gasket, where the gasket is expected to undergo localized yielding to provide adequate conformance and sealing, usually supplier may not be able to provide the required L/D curve due to difficulties to experimentally separate the large loads and small displacements from the elastic loads and deflections of the experimental apparatus. In absence of L/D curve, the typical analysis approach is to model gasket as 3D continuum elements available in ansys by considering nonlinear material and frictional contacts.
Technical Paper

Cummins Vehicle Mission Simulation Tool: Software Architecture and Applications

2010-10-05
2010-01-1997
This paper presents the business purpose, software architecture, technology integration, and applications of the Cummins Vehicle Mission Simulation (VMS) software. VMS is the value-based analysis tool used by the marketing, sales, and product engineering functions to simulate vehicle missions quickly and to gauge, communicate, and improve the value proposition of Cummins engines to customers. VMS leverages the best of software architecture practices and proven technologies available today. It consists of a close integration of MATLAB and Simulink with Java, XML, and JDBC technologies. This Windows compatible application software uses stand-alone mathematical models compiled using Real Time Workshop. A built-in MySQL database contains product data for engines, driveline components, vehicles, and topographic routes. This paper outlines the database governance model that facilitates effective management, control, and distribution of engine and vehicle data across the enterprise.
Technical Paper

Development of Parametric Tool to Design Base Frame for Cummins Marine Application Engine

2019-04-02
2019-01-0798
A spread sheet based parametric tool is developed to design the base frame for a marine generator-set. Factors such as engine details, generator details, anti-vibration mount (AVM) etc., that determine the design of the base frame, are set as parameters in the spreadsheet. The spreadsheet has formulae to calculate channel specifications, and AVM deflections. It is linked to channel standards database and selects the optimal channel based on calculations. Similarly, the tool provides guidance in selection of AVM from supplier catalogues, helps to predict number of anti-vibration mounts required and their location on base frame. This spread sheet is integrated with a generic base frame 3D model and 2D print in “Creo 3d modelling software” (Creo), which is auto-updated based on calculated parameters in the spreadsheet. Using this tool, the user can generate a 3D-model and 2D print. This tool helps to standardize the design process and reduces design turnaround time considerably.
Technical Paper

Development of a Hybrid, Auto-Ignition/Flame-Propagation Model and Validation Against Engine Experiments and Flame Liftoff

2007-04-16
2007-01-0171
In previous publications, Singh et al. [1, 2] have shown that direct integration of CFD with a detailed chemistry auto-ignition model (KIVA-CHEMKIN) performs reasonably well for predicting combustion, emissions, and flame structure for stratified diesel engine operation. In this publication, it is shown that the same model fails to predict combustion for partially premixed dual-fuel engines. In general, models that account for chemistry alone, greatly under-predict cylinder pressure. This is shown to be due to the inability of such models to simulate a propagating flame, which is the major source of heat release in partially premixed dual-fuel engines, under certain operating conditions. To extend the range of the existing model, a level-set-based, hybrid, auto-ignition/flame-propagation (KIVA-CHEMKIN-G) model is proposed, validated and applied for both stratified diesel engine and partially premixed dual-fuel engine operation.
Technical Paper

Development of a New 13L Heavy-Duty Diesel Engine Using Analysis-Led Design

2008-06-23
2008-01-1515
The paper covers the design and development of a new 13L heavy-duty diesel engine intended primarily for heavy truck applications in China. It provides information on the specific characteristics of the engine that make it particularly suitable for operation in China, and describes in detail some of the design techniques that were used. To meet these exacting requirements, extensive use was made of Analysis-Led Design, which allows components, sub-systems and the entire engine, aftertreatment and vehicle system to be modeled before designs are taken to prototype hardware. This enables a level of system and sub-system optimization not previously available. The paper describes the emissions strategy for China, and the physical design strategy for the new engine, and provides some engine performance robustness details. The engine architecture is discussed and the paper details the analysis of the major components - cylinder block, head, head seal, power cylinder and bearings.
Technical Paper

Drive by Noise System and Corresponding Facility Upgrades for Test Efficiency, Data Quality and Customer Satisfaction

2011-05-17
2011-01-1611
An existing pass by noise data acquisition system was upgraded to provide the sophisticated data analysis techniques and test site efficiency required to comply with the current and future drive by noise regulations. Use of six sigma tool such as voice of the customer helped in defining the customer requirements which were then translated into the desired engineering characteristics using QFD. Pugh concept matrix narrowed down the best option suitable for the test site modifications taking into account the critical constraints such as test complexity, system cost & transparency to the existing drive by noise setup. Features of the new system include data telemetry, frequency analysis, portability and efficient data management through the use of advanced data acquisition system. Wireless mode of the data transmission helped significantly avoid most of the test site modifications, which in turn helped to reduce the overall system implementation cost.
Journal Article

Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis

2019-04-02
2019-01-0263
This study is a continuation of previous work assessing the robustness of a Cummins XPI common rail injection system operating with gasoline-like fuel. All the hardware from the original study was retained except for the high pressure pump head and check valves which were replaced due to cavitation damage. An additional 400 hour NATO cycle was run on the refurbished fuel system to achieve a total exposure time of 800 hours and detect any other significant failure modes. As in the initial investigation, fuel system parameters including pressures, temperatures and flow rates were logged on a test bench to monitor performance over time. Fuel and lubricant samples were taken every 50 hours to assess fuel consistency, metallic wear, and interaction between fuel and oil. High fidelity driving torque and flow measurements were made to compare overall system performance when operating with both diesel and light distillate fuel.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

2018-04-03
2018-01-0792
Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
X