Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Calibration System for the Daimler Chrysler Medium and Heavy Duty Diesel Engines - An Exercise in Methods & Tools

2001-03-05
2001-01-1222
High demands in fuel consumption, efficiency, and low emissions lead to complex control functions for current and future diesel engine management systems. Great effort is necessary for their optimal calibration. At the same time, and particularly for cost reasons, many variants exist on one individual type of diesel engine management system. Not only is it used for several base engines, but these engines are also used in different environments and for different tasks. For optimal deployment, their calibration status must also be optimized individually. Furthermore, the demand for shorter development cycles and enhanced quality lead to a catalogue of new requirements for the calibration process and the affiliated tool. A new calibration system was developed, which optimally reflects the new demands.
Technical Paper

A Nozzle-Integrated Flow Sensor for Common-Rail Injection Systems

2001-03-05
2001-01-0614
We are the first to report about a micromachined flow sensor directly integrated in the Common Rail injection nozzle body between the double guidance and the tip of the nozzle. The thermal measurement principle is chosen, because it enables a very precise and fast detection of gaseous and liquid mass flows. Additionally, the velocity field in the nozzle is only slightly influenced by the integration of the sensor in the nozzle body due to the negligible height of the sensitive layer. For a hot film anemometer, a high pressure stable ceramic substrate can be used, fabricated in a low cost batch process. The technology, to fabricate the sensor, as well as the first flow measurements, carried out at a high pressure test set up, are presented.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

Aftertreatment Catalyst Design for the New DaimlerChrysler Supercharged 4-Cylinder Engine with Direct Gasoline Injection

2003-03-03
2003-01-1161
The launching of direct injection gasoline engines is currently one of the major challenges for the automotive industry in the European Union. Besides its potential for a notable reduction of fuel consumption, the engine with direct gasoline injection also offers increased power during stoichiometric and stratified operation. These advantages will most probably lead to a significant market potential of the direct injection concept in the near future. In order to meet the increasingly more stringent European emission levels (EURO IV), new strategies for the exhaust gas aftertreatment are required. The most promising technique developed in recent years, especially for NOx conversion in lean exhaust gases, is the so-called NOx storage catalyst.
Technical Paper

Catalyst Design for High Performance Engines Capable to Fulfill Future Legislation

2004-03-08
2004-01-1276
To meet future emission levels the industry is trying to reduce tailpipe emissions by both, engine measures and the development of novel aftertreatment concepts. The present study focuses on a joint development of aftertreatment concepts for gasoline engines that are optimized in terms of the exhaust system design, the catalyst technology and the system costs. The best performing system contains a close-coupled catalyst double brick arrangement using a new high thermal stable catalyst technology with low precious metal loading. This system also shows an increased tolerance against catalyst poisoning by engine oil.
Technical Paper

Catalyst Temperature Rise during Deceleration with Fuel Cut

2006-04-03
2006-01-0411
Automotive catalysts close coupled to gasoline engines operated under high load are frequently subjected to bed temperatures well above 950 °C. Upon deceleration engine fuel cut is usually applied for the sake of fuel economy, robustness and driveability. Even though catalyst inlet gas temperatures drop down immediately after fuel cut - catalyst bed temperatures may rise significantly. Sources for catalyst temperature rise upon deceleration with fuel cut are discussed in this contribution.
Technical Paper

Collaborative Product Creation Driving the MOST Cooperation

2002-10-21
2002-21-0003
The following document offers insight into the work of the MOST Cooperation. Now that MOST is on the road, a short overview of five years of successful collaborative work of the partners involved and the results achieved will be given. Emphasis is put on the importance of a shared vision in combination with shared values as a prerequisite for targeted collaborative work. It is also about additional key success factors that led to the success of the MOST Cooperation. Your attention will be directed to the way the MOST Cooperation sets and achieves its goals. And you will learn about how the organization was set-up to support a fast progression towards the common goal. The document concludes with examples of recent work as well as an outlook on future work.
Technical Paper

Current Status and Prospects for Gasoline Engine Emission Control Technology - Paving the Way for Minimal Emissions

2000-03-06
2000-01-0856
The background for the development activities of the motor vehicle industry is strongly influenced by lawmakers, with engine development, in particular, coming under increasing pressure from the requirements of emissions legislation. Demands for CO2 reduction and thus corresponding savings in consumption contrast with regulations which call for compliance with extremely low emission levels, featuring the extreme of zero tailpipe emissions, and alternative low emission levels which make accurate measurement a problem even with current analysis technology. An example of such requirements are the SULEV limits of California law. These standards have given rise to a wide variety of emission control concepts, each of which, however, has certain limitations in its application. In the context of this general setting, the paper shows that the phase directly subsequent to cold start should be focused upon if these ambitious targets are to be reached.
Technical Paper

Deactivation of TWC as a Function of Oil Ash Accumulation - A Parameter Study

2005-04-11
2005-01-1097
The oil ash accumulation on modern three way catalyst (TWC) as well as its influence on catalyst deactivation is evaluated as a parameter of oil consumption, kind of oil additive compound and additive concentration. The oil ash accumulation is characterized by XRF and SEM/EDX in axial direction and into the washcoat depth of the catalyst. The deposition patterns of Ca, Mg, P and Zn are discussed. The catalytic activity of the vehicle and engine bench aged catalysts is measured by performing model gas tests and vehicle tests, respectively. The influence of oil ash accumulation on the lifetime emission behavior of the vehicle is discussed.
Technical Paper

Effects Causing Untripped Rollover of Light Passenger Vehicles in Evasive Maneuvers

2004-03-08
2004-01-1057
Accident statistics show that rollover accidents contribute to a large proportion of fatal traffic accidents in the U.S.. In the past it has been documented that some light passenger cars showed tendencies to roll over in evasive lane change maneuvers. In 1997, a newly developed mini van rolled over in a severe double lane change test called “moose-test”. Recently (2001), a new SUV showed similar tendencies in the Consumers Union Short Course test. It is not immediately clear why these evasive test maneuvers are so strongly related to untripped rollover of light passenger vehicles. Therefore, the goal of current research is to understand the circumstances and effects causing modern passenger vehicles to roll over in evasive maneuvers on the road. This paper discusses research activities concerning the following questions: How do critical steering strategies lead to untripped rollover? Are resonant frequencies excited during maneuvers leading to rollover?
Technical Paper

Evaluation on Analytical Tire Models for Vehicle Vertical Vibration Simulation Using Virtual Tire Testing Method

1999-03-01
1999-01-0786
This paper evaluates several durability tire models using Virtual Tire Testing (VTT) strategy. VTT conducts tire testing (simulation) using LS–DYNA based on a Virtual Tire which is built by 3–D finite element mesh. VTT is repeatable and could do special tire tests which can't be done using normal tire testing bench. A brief review is given on durability tire models and several typical tire models are selected for this study. All the necessary parameters for establishing the analytical tire models are extracted from the Virtual Tire. Quarter vehicle model is used to simulate the vehicle vertical vibration. The comments of those analytical tire models are given based on their performance vs. VTT.
Technical Paper

Flow around an Isolated Wheel - Experimental and Numerical Comparison of Two CFD Codes

2004-03-08
2004-01-0445
This paper presents velocity and pressure measurements obtained around an isolated wheel in a rotating and stationary configuration. The flow field was investigated using LDA and a total pressure probe in the model scale wind tunnel at IVK/FKFS. Drag and lift were determined for both configurations as well as for the wheel support only. These results were used as a reference for comparing numerical results obtained from two different CFD codes used in the automotive industry, namely STAR-CD™ and PowerFLOW™. The comparison gives a good overall agreement between the experimental and the simulated data. Both CFD codes show good correlation of the integral forces. The influence of the wheel rotation on drag and lift coefficients is predicted well. All mean flow structures which can be found in the planes measured with LDA can be recognized in the numerical results of both codes. Only small local differences remain, which can be attributed to the different CFD codes.
Technical Paper

LS-DYNA 3D Interface Component Analysis to Predict FMVSS 208 Occupant Responses

2003-03-03
2003-01-1294
Today's interior systems engineer has been challenged with providing cost-effective instrument panel design solutions to meet NHTSA's new FMVSS 208 front crash regulations. Automotive manufacturers are in continuous search of newer methods and techniques to reduce prototype tests and cost. Analytical methods of predicting occupant and structural behavior using computer-aided engineering (CAE) analysis has been in place for quite some time. With the new FMVSS 208 regulations requiring both 5th and 50th percentile occupant testing, CAE analysis of predicting occupant response has become increasingly important. The CAE analyst is challenged with representing the barrier test condition, which involves the structure and the occupant moving at velocities of 25, 30 and 35 mph. Representing the cab kinematics in high-speed impacts is crucial, since capturing the vehicle intrusion and pitching should be made part of the input variables.
Technical Paper

Lube Formulation Effects on Transfer of Elements to Exhaust After-Treatment System Components

2003-10-27
2003-01-3109
After-treatment systems (ATS) consisting of new catalyst technologies and particulate filters will be necessary to meet increasingly stringent global regulations limiting particulate matter (PM) and NOx emissions from heavy duty and light duty diesel vehicles. Fuels and lubes contain elements such as sulfur, phosphorus and ash-forming metals that can adversely impact the efficiency and durability of these systems. Investigations of the impact of lubricant formulation on the transfer of ash-forming elements to diesel particulate filters (DPF) and transfer of sulfur to NOx storage catalysts were conducted using passenger car diesel engine technology. It was observed that for ATS configurations with catalyst(s) upstream of the DPF, transfer of ash-forming elements to the DPF was significantly lower than expected on the basis of oil consumption and lube composition. Sulfur transfer strongly correlated with oil consumption and lubricant sulfur content.
Technical Paper

Model-Based Control of the VGT and EGR in a Turbocharged Common-Rail Diesel Engine: Theory and Passenger Car Implementation

2003-03-03
2003-01-0357
In this article model-based controller design techniques are investigated for the transient operation of a common-rail diesel engine in order to optimize driveability and to reduce soot emissions. The computer-aided design has benefits in reducing controller calibration time. This paper presents a nonlinear control concept for the coordinated control of the exhaust gas recirculation (EGR) valve and the variable geometry turbocharger (VGT) in a common-rail diesel engine. The overall controller structure is set up to regulate the total cylinder air-charge with a desired fresh air-charge amount by means of controlling the intake manifold pressure and estimating the fresh air-charge inducted into the cylinders. During varying engine operating conditions the two control loops are coordinated by a compensation of the EGR valve action through the VGT controller.
Technical Paper

Numerical Simulation of Ammonia SCR-Catalytic Converters: Model Development and Application

2005-04-11
2005-01-0965
A two-dimensional numerical model describing the ammonia based SCR-process on vanadia-titania catalysts is presented. The model is able to simulate coated and extruded monoliths. For the determination of the intrinsic kinetics of the various NH3-NOx reactions, unsteady microreactor experiments were used. In order to account for the influence of transport effects the kinetics were coupled with a fully transient two-phase 1D+1D monolith channel model. The model has been validated extensively with laboratory data and engine test bench measurements. After validation the model has been applied to calculate catalyst NOx conversion maps, which were used to define catalyst sizes. Additional simulations were conducted studying the influence of cell density and NH3-dosage ratio.
Technical Paper

Numerical Simulation of NO/NO2/NH3 Reactions on SCR-Catalytic Converters:Model Development and Applications

2006-04-03
2006-01-0468
A 1D+1D numerical model describing the ammonia based SCR process of NO and NO2 on vanadia-titania catalysts is presented. The model is able to simulate coated and extruded monoliths. Basing on a fundamental investigation of the catalytic processes a reaction mechanism for the NO/NO2 - NH3 reacting system is proposed and modeled. After the parameterization of the reaction mechanism the reaction kinetics have been coupled with models for heat and mass transport. Model validation has been performed with engine test bench experiments. Finally the model has been applied to study the influence of NO2 on SCR efficiency within ETC and ESC testcycles, Additional simulations have been conducted to identify the potential for catalyst volume reduction if NO2 is present in the inlet feed.
Technical Paper

Numerical Simulation of Zeolite- and V-Based SCR Catalytic Converters

2007-04-16
2007-01-1136
A numerical model describing the ammonia based SCR process of NOX on zeolite catalysts is presented. The model is able to simulate coated and extruded monoliths. The development of the reaction kinetics is based on a study which compares the activity of zeolite and vanadium based catalysts. This study was conducted in a microreactor loaded with washcoat powder and with crushed coated monoliths. A model for the SCR reaction kinetics on zeolite catalysts is presented. After the parameterization of the reaction mechanism the reaction kinetics were coupled with models for heat and mass transport. The model is validated with laboratory data and engine test bench measurement data over washcoated monolith catalysts. A numerical simulation study is presented, aiming to reveal the differences between zeolite and vanadium based SCR catalysts.
Technical Paper

Plasma-Enhanced Adsorption and Reduction on Lean NOx-Catalysts

2001-09-24
2001-01-3567
The influence of adsorption and desorption processes on the non-thermal plasma enhanced catalytic reduction of NOx on NaZSM5- and Al2O3-based lean-NOx catalysts (Pt-NH4ZSM5, Cu-NaZSM5, Fe-NaZSM5, Pt-Al2O3, Pd-Al2O3, CuO-Al2O3, Ag-Al2O3) was investigated by temperature programmed reaction experiments in the temperature range from 100 °C to 600 °C. Dodecane was used as a reducing agent. Strong HC adsorption- and desorption effects were observed on the zeolite catalysts, which were not influenced by plasma-pretreatment. Adsorption of NO2 and desorption of NO occurred on Al2O3-based catalysts. By plasma-pretreatment adsorption of NO2 was induced at low temperatures. NOx-reduction rates of the catalysts Cu-NaZSM5, Fe-NaZSM5, and the Ag-Al2O3 were increased substantially by plasma-pretreatment. Both plasma-induced and catalytic oxidation of HCs were limiting factors of the NOx-reduction obtained on these catalysts.
Technical Paper

Possible Exhaust Gas Aftertreatment Concepts for Passenger Car Diesel Engines with Sulphur-free Fuel

1999-03-01
1999-01-1328
In order to fulfill future emissions standards, there is a need for new exhaust-gas aftertreatment concepts, with NOx-emissions reduction in passenger car diesel engines being of particular importance. The NOx storage catalyst is one of the technologies currently under discussion with high NOx conversion potential, and which is under development at DaimlerChrysler for EURO IV standards. With this system, the nitrogen oxides contained in the diesel exhaust gas are stored under lean exhaust-gas conditions and are reduced in the catalyst through an enriched air-fuel ratio of the exhaust-gas and favorable thermal conditions. Hydrocarbons, carbon monoxide and hydrogen are used as reducing agents. DaimlerChrysler has analyzed the effect of sulphur contained in the fuel on the operation of various catalysts during laboratory and engine testing. The sulphur dioxide in the exhaust gas generates sulfates, which remain on the catalyst when nitrate compounds are regenerated briefly.
X