Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Modeling of Thermal Expansion Valve for the Assessment of Refrigerant-Induced Noise

2016-04-05
2016-01-1295
Without engine noise, the cabin of an electric vehicle is quiet, but on the other hand, it becomes easy to perceive refrigerant-induced noise in the automotive air-conditioning (A/C) system. When determining the A/C system at the design stage, it is crucial to verify whether refrigerant-induced noise occurs in the system or not before the real A/C systems are made. If refrigerant-induced noise almost never occurs during the design stage, it is difficult to evaluate by vehicle testing at the development stage. This paper presents a 1D modeling methodology for the assessment of refrigerant-induced noise such as self-excitation noise generated by pressure pulsation through the thermal expansion valve (TXV). The GT-SUITE commercial code was used to develop a refrigerant cycle model consisting of a compressor, condenser, evaporator, TXV and the connecting pipe network.
Technical Paper

3D-CFD Simulation of DI-Diesel Combustion Applying a Progress Variable Approach Accounting for Detailed Chemistry

2007-10-29
2007-01-4137
A chemical sub-model for realistic CFD simulations of Diesel engines is developed and demonstrated by application to some test cases. The model uses a newly developed progress variable approach to incorporate a realistic treatment of chemical reactions into the description of the reactive flow. The progress variable model is based on defining variables that represent the onset and temporal development of chemical reactions before and during self ignition, as well as the stage of the actual combustion. Fundamental aspects of the model, especially its physical motivation and finding a proper progress variable, are discussed, as well as issues of practical implementation. Sample calculations of Diesel-typical combustion scenarios are presented which are based on the progress-variable model, showing the capability of the model to realistically describe the ignition-and combustion phase.
Technical Paper

3D-Simulation of DI-Diesel Combustion Applying a Progress Variable Approach Accounting for Complex Chemistry

2004-03-08
2004-01-0106
A progress variable approach for the 3D-CFD simulation of DI-Diesel combustion is introduced. Considering the Diesel-typical combustion phases of auto-ignition, premixed and diffusion combustion, for each phase, a limited number of characteristic progress variables is defined. By spatial-temporal balancing of these progress variables, the combustion process is described. Embarking on this concept, it is possible to simulate the reaction processes with detailed chemistry schemes. The combustion model is coupled with a mesh-independent Eulerian-spray model in combination with orifice resolving meshes. The comparison between experiment and simulation for various Diesel engines shows good agreement for pressure traces, heat releases and flame structures.
Technical Paper

A Holistic Hydraulic and Spray Model – Liquid and Vapor Phase Penetration of Fuel Sprays in DI Diesel Engines

1999-10-25
1999-01-3549
For studying the effects of injection system properties and combustion chamber conditions on the penetration lengths of both the liquid and the vapor phase of fuel injectors in Diesel engines, a holistic injection model was developed, combining hydraulic and spray modeling into one integrated simulation tool. The hydraulic system is modeled by using ISIS (Interactive Simulation of Interdisciplinary Systems), a one dimensional in–house code simulating the fuel flow through hydraulic systems. The computed outflow conditions at the nozzle exit, e.g. the dynamic flow rate and the corresponding fuel pressure, are used to link the hydraulic model to a quasi–dimensional spray model. The quasi–dimensional spray model uses semi–empirical 1D correlation functions to calculate spray angle, droplet history and droplet motion as well as penetration lengths of the liquid and the vapor phases. For incorporating droplet vaporization, a single droplet approach has been used.
Technical Paper

A Layer Structured Model Based Diagnosis: Application to a Gear Box System

2011-04-12
2011-01-0753
OBD (On Board Diagnosis) has been applied to detect malfunctions in powertrains. OBD requirements have been extended to detect various failures for ensuring the vehicle emission control system being normal. That causes further costs for additional sensors and software works. Two layers diagnosis system is proposed for a passenger car gearbox system to detect changes from normal behavior. Conventional physical constraints based diagnosis is placed on the base layer. Model based diagnosis and specific symptom finding diagnosis are built on the second layer. Conventional physical constraints based diagnosis is direct and effective way to detect the failure of system if the detected signals exceed their normal ranges. However under the case of system failure with related signals still remain in normal ranges, the conventional detection measures can not work normally. Under this case, Model based diagnosis is proposed to enhance the functionality of diagnosis system.
Technical Paper

A Method to Reduce the Calculation Time for an Internal Combustion Engine Model

2001-03-05
2001-01-0574
Coming along with the present movement towards the ultimately variable engine, the need for clear and simple models for complex engine systems is rapidly increasing. In this context Common-Rail-Systems cause a special kind of problem due to of the high amount of parameters which cannot be taken into consideration with simple map-based models. For this reason models with a higher amount of complexity are necessary to realize a representative behavior of the simulation. The high computational time of the simulation, which is caused by the increased complexity, makes it nearly impossible to implement this type of model in software in closed loop applications or simulations for control purposes. In this paper a method for decreasing the complexity and accelerating the computing time of automotive engine models is being evaluated which uses an optimized method for each stage of the diesel engine process.
Technical Paper

A New Approach to Particulate Measurement on Transient Test Cycles: Partial Flow Dilution as Alternative to CVS Full Flow Systems

2000-03-06
2000-01-1134
In a subproject of the aim to develop a worldwide certification procedure for heavy-duty on-highway engines (WHDC), the measuring technique for future low emitting engines was evaluated. One aspect is the introduction of partial flow dilution systems for the particulates measurement during transient test cycles instead of the currently required full flow dilution systems. This paper presents an investigation about the influence of sensitive sampling parameters on particulate mass and composition under steady state and transient engine operating conditions, and their effect on the correlation between partial flow and full flow dilution systems. The study has shown that the sampling parameters investigated have no or only minor influence on particulate mass and composition. Both partial flow dilution systems proved their transient capability by tracking the exhaust flow signal very well.
Technical Paper

A Reduced Order Turbo-Charging Model for Real Time Engine Torque Profile Control

2015-11-17
2015-32-0766
Torque profile control is one of required technologies for propulsion engines. A smaller parametric model is more preferable for control algorithm design and evaluation. Mean value engine torque can be obtained from throttle opening change using a transfer function. A transfer function for a turbocharged engine was investigated with thermo-dynamic equations for a turbine and a compressor and test data. A small turbocharged engine was tested to model the air transfer process. Turbine speed was measured with temperatures, pressures and air mass flow. Turbine speed response is like a first order system to air mass flow into a combustion chamber. The pressure ratio at the compressor is approximated by a curve proportional to the turbine speed square. Based on those findings, a reduced order model for describing dynamic air transfer process with a turbocharger was constructed. The proposed model is compact and suitable for engine torque control design and controller implementation.
Technical Paper

A reduced order turbocharging process model for manifold pressure control with EGR

2019-12-19
2019-01-2212
A mean value turbocharged engine model is useful in terms of accuracy and convenience for fuel economy strategies or engine controller development. Turbocharging process is a feedback system with a positive gain, i.e. increasing exhaust work leads to increasing a cycle work. The gain of the feedback system is determined mainly by exhaust work ratio in a cycle and inertia of the turbine. The work ratio was investigated based on engine test with EGR. A turbocharging process model was obtained using the work ratio in a cycle and theoretical equations. The model is applied to investigate manifold absolute pressure response with EGR.
Journal Article

Accelerated and Integrated Real Time Testing Process Based on Two Universal Controllers on Rapid Controller Prototyping

2008-04-14
2008-01-0285
Rapid Controller Prototyping (RCP) is an efficient method for design & development of ECU (Electronic Controller Unit) at early stage. Usually, RCP requires firstly performing Software-in-the-loop simulation and then connecting universal controller (e.g. MicroAutoBox) to real controlled system for testing of controller functionality. During this process, it is likely that some problems related to signal configuration and real time characteristics occur and consequently give rise to unexpected results, e.g., sensor signals or controlling signals produce large deviation and possibly damage components of real system under severe condition. On the other hand, it cannot make sure that the real time characteristics of designed controller are suitable just after applying Software-in-the-loop simulation.
Technical Paper

Aftertreatment Catalyst Design for the New DaimlerChrysler Supercharged 4-Cylinder Engine with Direct Gasoline Injection

2003-03-03
2003-01-1161
The launching of direct injection gasoline engines is currently one of the major challenges for the automotive industry in the European Union. Besides its potential for a notable reduction of fuel consumption, the engine with direct gasoline injection also offers increased power during stoichiometric and stratified operation. These advantages will most probably lead to a significant market potential of the direct injection concept in the near future. In order to meet the increasingly more stringent European emission levels (EURO IV), new strategies for the exhaust gas aftertreatment are required. The most promising technique developed in recent years, especially for NOx conversion in lean exhaust gases, is the so-called NOx storage catalyst.
Technical Paper

An 1D-3D Integrating Numerical Simulation for Engine Cooling Problem

2006-04-03
2006-01-1603
The combination of 1D and 3D fluid flow models is achieved using a co-simulation methodology. This realizes that the internal flow in a component simulated in 3D is incorporated into a network (system) containing components represented in 1D. This methodology gives the details of the internal flow while conserving overall mass flow in the system, thus eliminating uncertainties in boundary conditions prescribed in the 3D model and reducing the overall simulation time. This paper shows numerical results for internal flow of water flow circuit of engine cooling system and availability and current problem of 1D/3D co-simulation method are discussed.
Technical Paper

An Analysis on Cycle-by-cycle Variation and Trace-knock using a Turbulent Combustion Model Considering a Flame Propagation Mechanism

2019-12-19
2019-01-2207
Gasoline engines have the trace-knock phenomena induced by the fast combustion which happens a few times during 100 cycles. And that constrains the thermal efficiency improvement due to limiting the ignition timing advance. So the authors have been dedicating a trace-knock simulation so that we could obtain any pieces of information associated with trace-knock characteristics. This simulation consists of a turbulent combustion model, a cycle-by-cycle variation model and a chemical calculation subprogram. In the combustion model, a combustion zone is considered in order to obtain proper turbulent combustion speed through wide range of engine speed. From a cycle-by-cycle variation analysis of an actual gasoline engine, some trace-knock features were detected, and they were involved in the cycle-by-cycle variation model. And a reduced elementary reaction model of gasoline PRF (primary reference fuel) was customized to the knocking prediction, and it was used in the chemical calculation.
Technical Paper

An Improvement of the Prediction Method of the Idling Rattle in Manual Transmission - In the Case of the Manual Transmission with Backlash Eliminator -

2001-03-05
2001-01-1164
To reduce the idling rattle of manual transmissions, the computer simulation has been utilized. However, the conventional simulation model could not express properly the relationship between the transmission oil temperature and the rattle noise level, especially in case of transmission with backlash eliminator in constant mesh gears. In this study, the authors carried out detail experiments investigating the motion of each part in the transmission. Based on the experimental results, an additional mass representing all constant mesh speed gears supported on plain or rolling element bearings was introduced to the simulation model. Using the improved model, it was confirmed that the calculated RMS value of the fluctuation in countershaft angular acceleration corresponds to the experimental rattle noise level.
Technical Paper

Analysis and Design Requirements for Tandem TWC Systems

2005-04-11
2005-01-1093
Two-brick (tandem) three-way underfloor catalyst systems provide greater emission reduction performance compared to comparable single brick TWC systems, which contain the same amount of platinum group metal (PGM) for the same catalyst volume. This superior emission reduction performance is speculated to be due to front catalyst activity promoted by heat transfer from reverse exhaust gas flow in the gap between the front and the rear catalyst of tandem TWC system (hereinafter, tandem gap). Furthermore, the following findings were obtained by conducting experiments with model catalysts. 1) During catalyst light-off phase, conversion efficiency strongly depends on activity of the front portion of catalyst where temperature rises rapidly.
Technical Paper

Bionic Optimization of Air-Guiding Systems

2004-03-08
2004-01-1377
Topology optimization in structural analysis is known for many years. In the presented procedure, “topology optimization” is used for computational fluid dynamics (CFD) for the first time. It offers the possibility of a very fast optimization process under utilization of the physical information in the flow field instead of using optimization algorithms like for example evolution strategies or gradient based methods. This enables the design engineer to generate in a first layout air guiding systems with low pressure drop in a fast and easy manner, which can than be improved further due to constraints of styling or production requirements. This procedure has been tested with many examples and shows promising results with a reduction in pressure loss up to 60% compared to a duct designed in CAD in the traditional way.
Technical Paper

CATALYST SYSTEMS DEVELOPMENT

1977-02-01
770197
This paper describes the results of studies on the behavior of air-fuel ratios under feedback control, the effect of air-fuel ratio modulation on three-way catalyst conversion efficiency and emission test results with and without feed back control. As a further measure for decreasing automobile exhaust emissions, the three-way catalyst activity for reduction of CO, HC and NOx emissions is most effectively utilized when the normal engine air-fuel ratio perturbations are controlled and limited. In order to attain such an objective, this report describes the governing characteristics of an air-fuel ratio control system using an EFl engine coupled to a ZrO2 type O2 sensor and feed back loop. The conversion efficiency characteristics of a conventional three-way catalyst, using systematically modulated air-fuel ratios, and the resultant reduction of exhaust emissions with these systematic fluctuations and limited perturbations are also defined.
Technical Paper

Catalyst Design for High Performance Engines Capable to Fulfill Future Legislation

2004-03-08
2004-01-1276
To meet future emission levels the industry is trying to reduce tailpipe emissions by both, engine measures and the development of novel aftertreatment concepts. The present study focuses on a joint development of aftertreatment concepts for gasoline engines that are optimized in terms of the exhaust system design, the catalyst technology and the system costs. The best performing system contains a close-coupled catalyst double brick arrangement using a new high thermal stable catalyst technology with low precious metal loading. This system also shows an increased tolerance against catalyst poisoning by engine oil.
Technical Paper

Catalyst Temperature Rise during Deceleration with Fuel Cut

2006-04-03
2006-01-0411
Automotive catalysts close coupled to gasoline engines operated under high load are frequently subjected to bed temperatures well above 950 °C. Upon deceleration engine fuel cut is usually applied for the sake of fuel economy, robustness and driveability. Even though catalyst inlet gas temperatures drop down immediately after fuel cut - catalyst bed temperatures may rise significantly. Sources for catalyst temperature rise upon deceleration with fuel cut are discussed in this contribution.
Technical Paper

Correction of Nozzle Gradient Effects in Open Jet Wind Tunnels

2004-03-08
2004-01-0669
In open jet wind tunnels with high blockage ratios a sharp rise in drag is observed for models approaching the nozzle exit plane. The physical background for this rise in drag will be analyzed in the paper. Starting with a basic analysis of the dependencies of the effect on model and wind tunnel properties, the key parameters of the problem will be identified. It will be shown using a momentum balance and potential flow theory that interaction between model and nozzle exit can result in significant tunnel-induced gradients at the model position. In a second step, a CFD-based investigation is used to show the interaction between nozzle exit and a bluff body. The results cover the whole range between open jet and closed wall test section interaction. The model starts at a large distance from the nozzle, then moves towards the nozzle, enters the nozzle and is finally completely inside the nozzle.
X