Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Journal Article

A European Regulatory Perspective towards a Euro 7 Proposal

2022-06-14
2022-37-0032
The implementation of emission standards has brought significant reductions in vehicle emissions in the EU, but road transport is still a major source of air pollution. Future emission standards will aim at making road vehicles as clean as possible under a wide range of driving conditions and throughout their complete lifetime. The current paper presents the methodology followed by the Consortium for ultra LOw Vehicle Emissions (CLOVE) to support the preparation of the Euro 7 proposal. As a first step, the emission performance of the latest-technology vehicles under various driving conditions was evaluated. Towards this direction, an emissions database was developed, containing data from a wide range of tests, both within and beyond the current RDE boundaries.
Journal Article

Analysis of the Emission Conversion Performance of Gasoline Particulate Filters Over Lifetime

2019-09-09
2019-24-0156
Gasoline particulate filters (GPF) recently entered the market, and are already regarded a state-of-the-art solution for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfilment and beyond. Especially for coated GPF applications, the prognosis of the emission conversion performance over lifetime poses an ambitious challenge, which significantly influences future catalyst diagnosis calibrations. The paper presents key-findings for the different GPF application variants. In the first part, experimental GPF ash loading results are presented. Ash accumulates as thin wall layers and short plugs, but does not penetrate into the wall. However, it suppresses deep bed filtration of soot, initially decreasing the soot-loaded backpressure. For the emission calibration, the non-linear backpressure development complicates the soot load monitoring, eventually leading to compromises between high safety against soot overloading and a low number of active regenerations.
Technical Paper

Bharat Stage-V Solutions for Agricultural Engines for India Market

2019-01-09
2019-26-0148
The Bharat Stage (CEV/Tractor) IV & V emission legislations will come into force in Oct 2020 & Apr 2024 respectively, posing a major engineering challenge in terms of system complexity, reliability, costs and development time. Solutions for the EU Stage-V NRMM legislation in Europe, from which the BS-V limits are derived, have been developed and are ready for implementation. To a certain extent these European solutions can be transferred to the Indian market. However, certain market-specific challenges are yet to be defined and addressed. In addition, a challenging timeline has to be considered for application of advanced technologies and processes during the product development. In this presentation, the emission roadmap will be introduced in the beginning, followed by a discussion of potential technology solutions on the engine itself as well as on the after treatment components.
Journal Article

Crank-Angle Resolved Real-Time Engine Modelling: A Seamless Transfer from Concept Design to HiL Testing

2018-04-03
2018-01-1245
Virtual system integration and testing using hardware-in-the-loop (HiL) simulation enables front-loading of development tasks, provides a safer and reliable testing environment and reduces prototype hardware costs. One of the greatest challenges to overcome when performing HiL simulations is assuring a high model accuracy under stringent real-time requirements with acceptable development effort. This article represents a novel solution by deriving the plant model for HiL directly from the existing detailed models from the component layout phase using co-simulation methodology. It provides an effective and efficient model implementation and validation process followed by detailed quantitative analysis of the test results referred to the engine test bench measurements.
Journal Article

Evaluation of the Potential of Water Injection for Gasoline Engines

2017-09-04
2017-24-0149
Gasoline engine powertrain development for 2025 and beyond is focusing on finding cost optimal solutions by balancing electrification and combustion engine efficiency measures. Besides Miller cycle application, cooled exhaust gas recirculation and variable compression ratio, the injection of water has recently gained increased attention as a promising technology for significant CO2 reduction. This paper gives deep insight into the fuel consumption reduction potential of direct water injection. Single cylinder investigations were performed in order to investigate the influence of water injection in the entire engine map. In addition, different engine configurations were tested to evaluate the influence of the altering compression ratios and Miller timings on the fuel consumption reduction potential with water injection.
Technical Paper

Experimental Proof-of-Concept of HiL Based Virtual Calibration for a Gasoline Engine with a Three-Way-Catalyst

2019-12-19
2019-01-2301
The increasing complexity of modern combustion engines together with the substantial variability of hybrid electric powertrains, lead to new challenges in function development, system integration and vehicle calibration processes. Hardware-in-the-Loop (HiL) simulations have been introduced to front-load part of the testing and calibration tasks from the vehicle to a virtual environment. With this approach, the simulation quality and the cost-benefit ratio are strongly dependent on the accuracy of the plant modelling and the computational effort. This paper introduces a novel HiL simulation platform for an engine control unit (ECU) with a crank-angle resolved real-time model (GT-Power) for a gasoline engine with direct fuel injection, single stage turbocharging and a three-way catalyst. By simplifying the fluid dynamics simulation model from the concept phase, a good compromise between model accuracy and computation speed can be achieved with relatively low effort.
Technical Paper

Experimental and Numerical Investigation of a Single-Cylinder Methanol Port-Fuel Injected Spark Ignition Engine for Heavy-Duty Applications

2024-01-16
2024-26-0072
With the increasing focus on reducing CO2 emissions to combat global warming and climate change, the automotive industry is exploring near zero-emission alternative fuels to replace traditional fossil-based fuels like diesel, gasoline, and CNG. Methanol is a promising alternative fuel that is being evaluated in India due to its easy transportation and storage, as well as its production scalability and availability potential. This study focuses on the retro-fitment solution of M100 (pure methanol) SI port-fuel injection (PFI) mode of combustion. A heavy duty single-cylinder engine test setup was used to assess methanol SI combustion characteristic. Lean operation strategy has been investigated. At lean mixture conditions a significant drop in NOX and CO emissions was achieved. The fuel injection techniques and the impact of exhaust gas recirculation (EGR) on the conventional stoichiometric combustion process is highlighted.
Technical Paper

In-Use Compliance Opportunity for Diesel Powertrains

2018-04-03
2018-01-0877
In-use compliance under LEV III emission standards, GHG, and fuel economy targets beyond 2025 poses a great opportunity for all ICE-based propulsion systems, especially for light-duty diesel powertrain and aftertreatment enhancement. Though diesel powertrains feature excellent fuel-efficiency, robust and complete emissions controls covering any possible operational profiles and duty cycles has always been a challenge. Significant dependency on aftertreatment calibration and configuration has become a norm. With the onset of hybridization and downsizing, small steps of improvement in system stability have shown a promising avenue for enhancing fuel economy while continuously improving emissions robustness. In this paper, a study of current key technologies and associated emissions robustness will be discussed followed by engine and aftertreatment performance target derivations for LEV III compliant powertrains.
Technical Paper

Investigations Regarding Deposit Formation on Diesel Oxidation Catalysts

2020-04-14
2020-01-1432
Catalyst fouling by deposit formation on components in the exhaust aftertreatment system is critical since RDE limits must be obtained at any time. Besides, uncontrolled oxidation of carbonaceous deposits might damage the affected exhaust aftertreatment component. To comply with current and future emission standards, diesel engines are usually operated with high EGR rates leading to increased soot and hydrocarbon emissions, which increases the likeliness of the formation of carbonaceous deposits on EAT components. With this background, a research project investigating the influencing parameters and mechanisms of deposit formation on DOCs was carried out. In a follow-up project, the results will be used in order to compare different deposit removal strategies. Within the scope of the presented project, a reference driving cycle was developed in order to create deposits within a short time.
Technical Paper

On-Board Monitoring of Emissions in the Future Euro 7 Standard

2023-08-28
2023-24-0111
The proposed Euro 7 emission standard foresees that the emission behaviour of Euro 7 vehicles is monitored via an on-board monitoring (OBM) system. In Euro 7 vehicles, OBM systems will monitor the emissions of nitrogen oxides (NOX), ammonia (NH3) and particulate matter (PM) for every trip through a combination of measured and modelled data. Sensors employed to support on-board diagnostics (OBD) in current vehicles may be used to support OBM. According to the Euro 7 OBM concept presented in this paper, OBM will serve a dual purpose: the first is to warn the user of a vehicle about the need to perform repairs on the engine or the pollution control systems when these are needed. If these repairs are not performed in a timely manner, the OBM system will be able to ultimately prevent engine restart, akin to the existing low-reagent driver warning system in some compression ignition vehicles. The second purpose of OBM is to monitor the compliance of vehicle types with the emission limits.
Technical Paper

Relevance of Exhaust Aftertreatment System Degradation for EU7 Gasoline Engine Applications

2020-04-14
2020-01-0382
Exhaust aftertreatment systems must function sufficiently over the full useful life of a vehicle. In Europe this is currently defined as 160.000 km. With the introduction of Euro 7 it is expected that the required mileage will be extended to 240.000 km. This will then be consistent with the US legislation. In order to quantify the emission impact of exhaust system degradation, an Euro 7 exhaust aftertreatment system is aged by different accelerated approaches: application of the Standard Bench Cycle, the ZDAKW cycle, a novel ash loading method and borderline aging. The results depict the impact of oil ash on the oxygen storage capacity. For tailpipe emissions, the maximum peak temperatures are the dominant aging factor. The cold start performance is effected by both, thermal degradation and ash accumulation. An evaluation of this emission increase requires appropriate benchmarks.
Journal Article

Ultra-Low NOx Emissions with a Close-Coupled Emission Control System on a Heavy-Duty Truck Application

2021-09-21
2021-01-1228
Heavy-duty vehicles represent a significant portion of road transport and they need to operate in a clean and efficient manner. Their emission control systems need to be enhanced to sustain the high conversion efficiencies seen during motorway conditions inother operating conditions. The European Commission is developing legislative proposals for Euro 7 emissions regulations for light- and heavy-duty vehicles. The new Euro 7regulation will likely focus on ensuring the emissions from heavy-duty vehicles are minimized over extensive on-road operating conditions and specifically on operating conditions such as urban driving and cold-start operation. These challenges are increased by the need to ensure low secondary emissions like NH3 and N2O, as well as a low impact on CO2 emissions. The paper outlines the low pollutant emissions achieved by a heavy-duty Diesel demonstrator vehicle.
X