Refine Your Search

Topic

Author

Search Results

Technical Paper

1987 Thunderbird Turbo Coupe Programmed Ride Control (PRC) Suspension

1987-02-01
870540
This paper describes Programmed Ride Control (PRC), the automatic adjustable shock absorber system designed and patented by Ford Motor Company. The system utilizes low shock absorber damping under normal driving conditions to provide soft boulevard ride, automatically switching to firm damping when required for improved handling. The system's microprocessor control module “learns” where the straight ahead steering wheel position is, allowing the system to respond to absolute steering wheel angle. A closed loop control strategy is used to improve system reliability and to notify the driver in the event of a system malfunction. Fast acting rotary solenoids control the damping rate of the shock absorbers.
Journal Article

A Comparative Benchmark Study of using Different Multi-Objective Optimization Algorithms for Restraint System Design

2014-04-01
2014-01-0564
Vehicle restraint system design is a difficult optimization problem to solve because (1) the nature of the problem is highly nonlinear, non-convex, noisy, and discontinuous; (2) there are large numbers of discrete and continuous design variables; (3) a design has to meet safety performance requirements for multiple crash modes simultaneously, hence there are a large number of design constraints. Based on the above knowledge of the problem, it is understandable why design of experiment (DOE) does not produce a high-percentage of feasible solutions, and it is difficult for response surface methods (RSM) to capture the true landscape of the problem. Furthermore, in order to keep the restraint system more robust, the complexity of restraint system content needs to be minimized in addition to minimizing the relative risk score to achieve New Car Assessment Program (NCAP) 5-star rating.
Technical Paper

A Comparison of Time Domain and Frequency Domain Test Methods for Automotive Components

1994-11-01
942279
Frequency domain testing has had limited use in the past for durability evaluations of automotive components. Recent advances and new perspectives now make it a viable option. Using frequency domain testing for components, test times can be greatly reduced, resulting in considerable savings of time, money, and resources. Quality can be built into the component, thus making real-time subsystem and full vehicle testing and development more meaningful. Time domain testing historically started with block cycle histogram tests. Improved capabilities of computers, controllers, math procedures, and algorithms have led to real time simulation in the laboratory. Real time simulation is a time domain technique for duplicating real world environments using computer controlled multi-axial load inputs. It contains all phase information as in the recorded proving ground data. However, normal equipment limitations prevent the operation at higher frequencies.
Technical Paper

A Life Cycle Assessment of Natural Fiber Reinforced Composites in Automotive Applications

2014-04-01
2014-01-1959
Automakers have the opportunity to utilize bio-based composite materials to lightweight cars while replacing conventional, nonrenewable resource materials. In this study, Life Cycle Assessment (LCA) is used to understand the potential benefits and tradeoffs associated with the implementation of bio-based composite materials in automotive component production. This cradle-to-grave approach quantifies the fiber and resin production as well as material processing, use, and end of life for both a conventional glass-reinforced polypropylene component as well as a cellulose-reinforced polypropylene component. The comparison is calculated for an exterior component on a high performance vehicle. The life cycle primary energy consumption and global warming potential (GWP) are evaluated. Reduced GWP associated with the alternative component are due to the use of biomass as process energy and carbon sequestration, in addition to the alternative material component's lightweighting effect.
Technical Paper

A Micromachined Silicon Mass-Air-Flow Sensor

1992-02-01
920473
This paper describes the fabrication and operation of a low-cost, monolithic silicon mass-air-flow sensor (MAFS) developed for automotive applications. The device is a hot wire anemometer made of two thin single-crystal silicon beams, one being the heated element and the other serving as a temperature reference. Temperature compensation techniques and the design tradeoffs to maximize performance while ensuring durability in the harsh automotive environment are discussed.
Technical Paper

A Momentum and Energy Approach to Modeling Crash Behavior, Quantifying Crash Severity, and Identifying Crash Configurations

2000-10-03
2000-01-2714
This paper focuses on the role and significance of linear momentum and kinetic energy in controlling air bags aboard vehicles. Among the results of the study are analytic and geometric models that characterize crash behavior and control algorithms that quantify crash severity and identify crash configurations. These results constitute an effective basis for crash-data design and air-bag control.
Technical Paper

A New Component Test Methodology Concept for Side Impact Simulation

1999-03-01
1999-01-0427
This paper describes the development of a new component test methodology concept for simulating NHTSA side impact, to evaluate the performance of door subsystems, trim panels and possible safety countermeasures (foam padding, side airbags, etc.). The concept was developed using MADYMO software and the model was validated with a DOT-SID dummy. Moreover, this method is not restricted to NHTSA side impact, but can be also be used for simulating the European procedure, with some modifications. This method uses a combination of HYGE and VIA decelerator to achieve the desired door velocity profile from onset of crash event until door-dummy separation, and also takes into account the various other factors such as the door/B pillar-dummy contact velocity, door compliance, shape of intruding side structure, seat-to-door interaction and initial door-dummy distance.
Journal Article

A Resonant Capacitive Coupling WPT-Based Method to Power and Monitor Seat Belt Buckle Switch Status in Removable and Interchangeable Seats

2019-04-02
2019-01-0465
In this study, we present an intelligent and wireless subsystem for powering and communicating with three sets of seat belt buckle sensors that are each installed on removable and interchangeable automobile seating. As automobile intelligence systems advance, a logical step is for the driver’s dashboard to display seat belt buckle indicators for rear seating in addition to the front seating. The problem encountered is that removable and interchangeable automobile seating outfitted with wired power and data links are inherently less reliable than rigidly fixed seating, as there is a risk of damage to the detachable power and data connectors throughout end-user seating removal/re-installation cycles.
Technical Paper

A Study on Ride-Down Efficiency and Occupant Responses in High Speed Crash Tests

1995-02-01
950656
In vehicle crash tests, an unbelted occupant's kinetic energy is absorbed by the restraints such as an air bag and/or knee bolster and by the vehicle structure during occupant ride-down with the deforming structure. Both the restraint energy absorbed by the restraints and the ride-down energy absorbed by the structure through restraint coupling were studied in time and displacement domains using crash test data and a simple vehicle-occupant model. Using the vehicle and occupant accelerometers and/or load cell data from the 31 mph barrier crash tests, the restraint and ride-down energy components were computed for the lower extremity, such as the femur, for the light truck and passenger car respectively.
Technical Paper

Accelerated Testing of Nonvolatile Memory Retention

1984-02-01
840488
This paper discusses the testing for retentivity of non-volatile memories. The physics associated with the reliable production of various non-volatile data storage devices has long been a topic of debate. The ability to reliably produce devices which endure erase/write cycling and retain data for extended periods of time has been questionable. Recent improvements in IC processing has given rise to claims of enhancements in both of these areas. Non-volatile memories are attractive in many automotive electronic applications where battery backup is neither convenient or feasible, but because of reliability concerns they have not found their way into critical applications. In applications like odometer or emission control calibrations it is imperative that memory retention is assured. In order to verify the reliability of the various available non-volatile memory devices, an accelerated test program was instituted.
Technical Paper

Advanced Emission Speciation Methodologies for the Auto/Oil Air Quality Improvement Research Program - I. Hydrocarbons and Ethers

1992-02-01
920320
An analytical method for the determination of hydrocarbon and ether emissions from gasoline-, methanol-, and flexible-fueled vehicles is described. This method was used in Phase I of the Auto/Oil Air Quality Improvement Research Program to provide emissions data for various vehicles using individual reformulated gasolines and alternate fuels. These data would then be used for air modeling studies. Emission samples for tailpipe, evaporative, and running loss were collected in Tedlar bags. Gas chromatographic analysis of the emissions samples included 140 components (hydrocarbons, ethers, alcohols and aldehydes) between C1 and C12 in a single analysis of 54-minutes duration. Standardization, quality control procedures, and inter-laboratory comparisons developed and completed as part of this program are also described.
Technical Paper

Advanced Emissions Speciation Methodologies for the Auto/Oil Air Quality Improvement Research Program - II. Aldehydes, Ketones, and Alcohols

1992-02-01
920321
Analytical methods for determining individual aldehyde, ketone, and alcohol emissions from gasoline-, methanol-, and variable-fueled vehicles are described. These methods were used in the Auto/Oil Air Quality Improvement Research Program to provide emission data for comparison of individual reformulated fuels, individual vehicles, and for air modeling studies. The emission samples are collected in impingers which contain either 2,4-dinitrophenylhydrazine solution for the aldehydes and ketones or deionized water for the alcohols. Subsequent analyses by liquid chromatography for the aldehydes and ketones and gas chromatography for the alcohols utilize autoinjectors and computerized data systems which permit high sample throughput with minimal operator intervention. The quality control procedures developed and interlaboratory comparisons conducted as part of this program are also described.
Technical Paper

An Advanced Instrument for the Real Time Measurement of Engine Oil Economy

1992-02-01
920655
A number of advancements have been made in the coulometric sulfur trace instrumental technique for the real-time measurement of engine oil economy. These advancements include modification of the coulometric cell to improve reliability and reproducibility. The instrument has been interfaced with a microcomputer for instrument control as well as data acquisition, storage, and analysis. Studies were undertaken which demonstrate sufficient sensitivity and linearity for determination of engine oil economy at levels better than 10,000 miles/quart. Applications to steady-state engine oil consumption mapping and to instantaneous oil consumption during transient engine cycling are described. These instruments are being produced by an outside supplier for use in various company locations in both the engine production and engine research environments.
Technical Paper

An Angular Sensor for Transmission Error Inspection

1982-02-01
820054
To serve the need of in-line rear axle diagnostics as well as other types of transmission inspection, an angular sensor development has been undertaken. It has resulted in a new device, incorporated into a system which performs angular error sensing at three levels. High precision of better than 0.003% in velocity variations is achieved. A continuous check of the null-error status of the devices is maintained in order to ensure maximum reliability of the readings. An easy on-site calibration check is available which eliminates the need for any precision calibrating fixture. The device is configured to accommodate a pass-through drive shaft for in-line mounting. A rugged design and immunity to rotor imperfections are advantageous in a plant environment.
Technical Paper

An Automotive Application of Surface Mounted Device Technology

1985-02-01
850139
The paper describes the application of surface mounted technology to cost reduce and downsize an existing electronic control module. Ford Motor Company's Lamp Outage Module was chosen to demonstrate the advantages of this technology. The application of this new manufacturing technology to an automotive product required careful printed circuit board design and component selection. The design considerations, test plan and reliability results are presented. The test results indicate that with proper component selection performance can be obtained that surpasses the existing manufacturing process. This technology does promise vehicle cost reductions as it is applied to other automotive products.
Technical Paper

An Ultra-Light Thin Sliding Door Design - A Multi-Product Multi-Material Solution

2002-03-04
2002-01-0391
Sliding door designs are applied to rear side doors on vans and other large vehicles with a trend towards dual sliding doors with power operation. It is beneficial for the vehicle user to reduce the weight of and space occupied by these doors. Alcoa, in conjunction with Ford, has developed a multi-product, multi-material-based solution, which significantly reduces the cost of an aluminum sliding door and provides both consumer delight and stamping-assembly plant benefits. The design was successfully demonstrated through a concept readiness/technology demonstration program.
Technical Paper

An Urea Lean NOx Catalyst System for Light Duty Diesel Vehicles

1995-10-01
952493
Future European air quality standards for light duty diesel vehicles will include stringent NOx emission regulations. In order to meet these regulations, a lean NOx catalyst system may be necessary. Since the catalytic removal of NOx is very difficult with the large concentration of oxygen present in diesel exhaust, a reductant is usually added to the exhaust to increase the NOx conversion. This paper describes a lean NOx catalyst system for a Transit light-duty truck which uses a reductant solution of urea in water. In this work, a microprocessor was used to vary the amount of the reductant injected depending on the operating conditions of a 2,5 L naturally aspirated HSDI engine. The NOx conversions were 60% and 80% on the current European driving cycle and the U.S. FTP cycles, respectively. Data on the emissions of HC, CO, NOx, particulate mass and composition, individual HC species, aldehydes, PAH and most HC species were evaluated.
Technical Paper

Application of Performance and Reliability Concepts to the Design of Ceramic Regenerators

1977-02-01
770334
Four regenerator matrix samples, fabricated by different manufacturing methods and consisting of different ceramic materials and cell geometries, were studied to determine their reliability and performance potential in a typical industrial gas turbine engine. Hypothetical regenerators were designed from these matrix samples to give identical engine performance, and the thermal stress was determined for each. In some instances, it was necessary to stress relieve and preload the rims in order to reduce the thermal stresses so that acceptable reliability could be obtained. The four hypothetical regenerators were then compared on the basis of size, cost, leakage, etc., so that the advantages of each configuration could be observed. The performance and reliability analysis was based on Ford Motor Company's shuttle rig performance tests and over 200,000 core-hours of engine test on ceramic regenerators. The engine test program is described in detail.
Technical Paper

Automotive Convenience Products Trends and Prospects

1985-02-01
850310
The purpose of this paper is to describe the growth and the trends of automotive convenience products. These products contributed to make the driving experience more pleasurable. Electronics have contributed to this growth since the sixties, and its contribution and prospects will be the prime focus of this paper. With the continuing advance of electronic products in the consumer and industrial sectors, the consumer wants' and expectations are changing, especially with the “Baby Boom” generation. More new convenience features will be developed by the prudent use of electronics. The development of these future products require a thorough understanding of consumer wants and needs through market research, careful adaptation of the emerging technology to avoid gimmickry, and dedicated application of engineering know how to design package efficient, cost effective and reliable products.
Technical Paper

Automotive Obstacle Detection Systems: a Survey of Design Requirements and Vehicle Integration Issues

1998-10-19
98C021
Obstacle detection technology has made significant progress in the last five years in the important product areas of quality, performance and affordability. Ford Motor Company's market research indicates that our customers are very interested in new safety features. Drivers consider obstacle detection and collision warning technology as the next breakthrough in safety technology. Ford recognizes the importance of moving from the collision mitigation to the collision avoidance paradigm. Fortunately, the first step in collision avoidance can be taken by equipping the vehicle with reliable and affordable obstacle detection sensors
X