Refine Your Search

Topic

Search Results

Technical Paper

A Multi-Vane Expander, by Adding Power, Can Improve The Fuel Economy Of Long-Haul Diesel Trucks

1978-02-01
780689
An organic Rankine Bottoming cycle added to Diesel engines used for long-haul trucks has the potential of improving their peak fuel economy by up to 15% over a typical duty cycle. General Electric has developed a multi-vane rotary expander which has a measured isentropic brake efficiency of 80+% over a wide range of speed and power levels with organic working fluids. High cycle efficiency for design and off-design conditions is achieved with the multi-vane expander. The potential advantages of the multi-vane expander for the Diesel engine bottoming cycle include the elimination of a high speed gear box and the potential for over 80% isentropic engine efficiency. The multi-vane expander is a ruggedly built component running at Diesel engine speed. This paper describes the design and evaluation of a nominal 40 HP multi-vane expander for this application.
Technical Paper

A Simplified Method for the Measurement of Vehicular Rolling Resistance

1974-02-01
740423
A method for measurement of rolling resistance of vehicles using only a single accelerometer measurement has been developed and a simple instrument has been constructed. Results of typical measurements on large, electrically propelled off-highway trucks are discussed.
Technical Paper

Advanced I/P Materials and Process, Part 1

1986-11-01
861968
Today's instrument panel specifications for passenger cars are also applied to most light trucks and vans because internal company standards are dictating that light trucks and vans should approach the occupant safety of existing cars. In this presentation, we will examine the traditional specifications for pre-1988 model year, which center on a few key materials and part performance properties, and the increasing number of specifications which are being called for in 1988 model year and beyond, which require altogether new materials and processing systems. (Throughout this discussion, it should be noted that in referencing “automobiles” we are including light trucks and vans.)
Technical Paper

Development Testing of High Temperature Bearings for SP-100 Control Drive Assemblies

1992-08-03
929234
Initial preliminary development phases of two distinct SP-100 control drive assembly bearing test programs were successfully completed at elevated temperature in vacuum. The first was for the reflector drive line spherical self-aligning bearings. Each bearing consisted of a carbon-graphite ball mounted on an aluminum oxide-coated Ta-10%W shaft, captured by an aluminum oxide-coated Ta-10%W socket. One set of these bearings was exposed to temperatures up to 1180K (1665°F) at 1.33x10-6 Pa (1x10-8 torr) and subjected to 38000 cycles of motion. Friction coefficients were found to be between 0.11 and 0.25 over the full range of operation. Overall performance of the bearings was excellent, with only slight wear observed. The second test program was for the safety rod slider bearing. Zirconium carbide coated Nb-1%Zr bearing pads were stroked inside a molybdenum tube at temperatures up to 1422K (2100°F) at ∼1.33x10-6 Pa with a normal load of 1.02 Kg between each sliding surface.
Technical Paper

Development of Hot-Isostatically Pressed and Forged P/M Rene 95 for Turbine Disc Application

1974-02-01
740862
Previous studies had demonstrated the economic and technical feasibility of producing high-quality forgings for aircraft turbine engine parts from hot-isostatically pressed (HIP) Rene 95 powder billets. The present program was aimed at developing a production practice for making HIP + forged turbine discs. The major goal was improved product fabricability and reliability with minimum cost. The program was conducted using argon atomized Rene 95 powder. Experimental studies were conducted to evaluate the effect of powder characteristics, HIP parameters, preform design, and forging conditions on forgeability, microstructure, and mechanical properties. The results of these studies were incorporated into a pilot production run in which 10 disc forgings were made and evaluated. The selected process involved the consolidation of -60 mesh powder to full density by hot-isostatic pressing at a temperature above the γ' solvus temperature.
Technical Paper

Development of a Hydromechanical Steering Transmission

1972-02-01
720726
The advantages of infinitely variable ratio steering and propulsion for track laying vehicles are well known. Studies and demonstrator programs in the past decade have indicated that the hydromechanical transmission has the most promise of providing infinitely variable ratio for military vehicles. In 1966 the Army launched a program to develop the hydromechanical transmission to “production ready” status. This paper describes that program, the transmission selected, and some of the problems encountered in the transition from the demonstrator stage to one of readiness for military application.
Technical Paper

ELECTRIC DRIVE for Off-Highway Vehicles

1960-01-01
600028
THE CONCEPT of an electric motor mounted inside the rim of a large wheel provides several advantages: flexibility, weight and cost reductions, and adaptability to established operating and maintenance patterns. A heavy-duty traction motor drive has been designed that eliminates the need for mechanical drive lines, differentials, and hydraulic torque converters. This paper describes the gear train, lubrication system, brakes, and ventilation of such a drive. Also discussed is the engine-generator set for an electric wheel motor.*
Technical Paper

Exploring the Potential of a Quadruped

1969-02-01
690191
A four-legged, 3000 lb, walking truck test bed has been developed and the test results have proved the feasibility of walking machines. Effectiveness of this control method where the machine mimics man’s arm and leg movements was shown by a variety of maneuverability experiments. Therefore, it has been proved that it is possible to develop this vehicle concept, and the control method involved, to effectively emulate animals in the way they travel on rough terrain. Human perception, judgment, and agility are transmitted through the machine in a manner that lets the operator easily imagine that the machine is merely an effective extension of his own appendages. The human psychomotor action, coupled with the power and ruggedness of the machine, provides a valuable marriage. It opens new vistas not only for rough terrain vehicles but also for a variety of other manipulative machines. Many jobs require the sensing acuity of man but are too tough for the frail human flesh.
Technical Paper

High Bypass Versus Low Bypass Engine Installation Considerations

1966-02-01
660735
Installation considerations for high bypass engines in the range of 5-10 are examined. An engine and installation concept for the high bypass is described. Installation considerations discussed include the effects of nacelle shape, wing proximity, inlets, thrust reversers, and accessory location. It is pointed out that the high bypass engine may offer the flexibility to design the ideal aerodynamic installation without compromise by installation requirements.
Technical Paper

High Temperature Turbine Design Considerations

1971-02-01
710462
The major technological developments which have made possible the trend towards higher temperatures in modern aircraft gas turbine engines are discussed. The relative importance of manufacturing processes, material developments, cooling techniques, analytical design procedures, rupture and cyclic life considerations, and aerodynamic and mechanical design improvements are discussed along with illustrative examples and technical data. The need for a balanced design approach is stressed, and examples are given where trade-offs can be made. It is noted that the advances in aircraft engines during the last 10 years have been based on the evolution of sound engineering principles, extensive component and engine development, and careful consideration of the operational requirements rather than a tremendous breakthrough or revolutionary concept in any one area.
Technical Paper

Initial Testing of a 250 KW Starter/Generator for Aircraft Applications

1994-04-01
941160
The work reported in this paper has been conducted by a team from GE-Aircraft Engines, GE-CR&D, and Sundstrand under a contract sponsored by the USAF, Wright Laboratories, WPAFB, Contract No. F33615-90-C-2052. The objective of this contract is to prove the feasibility of an Integral Starter/Generator (IS/G) through the preliminary design stage and demonstrate the starter/ generator technology in the externally mounted version utilizing switched reluctance machine technology. This paper will report on the progress for the EIS/G-system through the initial testing stage. Comparison of the finished hardware with the design results presented earlier will lead of the paper. This is followed by the discussion of the early testing results for the system testing. Recommendation on additional testing will be presented at the end of the paper.
Technical Paper

Inspection of Turbine Blades Using Computer Aided Laser Technology

1980-09-01
801173
Measurement of dimensional characteristics of airfoil parts is primarily a manual, labor intensive operation. It employs a wide variety of gages that vary from very expensive optical comparitors to inexpensive pin gages. An automatic non-contacting inspection gage capable of measuring most dimensional characteristics would be cost effective, simplify inspection operations, consolidate a number of gages into one, and improve overall inspection reliability by minimizing human involvement. This paper presents the results of the design and development of a demonstrator semi-automatic laser gage dimensional inspection system that addresses this problem.
Technical Paper

Labyrinth Seal Designs Have Benefitted from Development and Service Experience

1971-02-01
710435
If the labyrinth seal designer can first determine the nature, cause, and resolution of previous problems, he can then better judge what to do and how to do it for today's engines. The designer of long-life labyrinth seals is primarily interested in those design features and design criteria which have been substantiated by actual service experience. If the design features or criteria are too recent to have had significant service experience, component or factory engine tests may provide valuable substantiation.
Technical Paper

Lateral Joint Movement Capability - The Key to Durable Formed-In-Place Gasketing

1986-02-01
860626
A new silicone rubber formed-in-place gasketing concept has been developed which has greatly reduced the incidence of warranty oil leaks in engine and drive train components. This concept utilizes a combination of joint configuration and unique cured properties of the silicone formed-in-place gasketing material to achieve leak-free performance over the life of the component.
Technical Paper

New Turbofan Engines - F101 and TF34

1972-02-01
720841
The General Electric Company has recently been in the process of developing two new turbofan aircraft engines-the TF34 and the F101. The TF34 has been developed for the U.S. Navy's S-3A antisubmarine warfare aircraft and has been selected by Fairchild-Hiller for the U.S. Air Force A-10A; the F101 is being developed for the U.S. Air Force B-1 strategic bomber. Each of the new aircraft programs has the common requirement for subsonic endurance. The S-3A and A-10A requirements include subsonic operation only while the B-1 includes supersonic capability as well as subsonic. This basic mission-mix difference combined with major differences in engine/air vehicle installation features and different levels of technology applied due to the relative chronology in the respective development programs leads to contrasts in the design features of the major components of the engines.
Technical Paper

ORION A Gas-Generator Turbocompound Engine

1957-01-01
570028
THE “Orion” gas-generator turbocompound engine consists of a supercharged, regenerative aircooled, 2-stroke-cycle opposed-piston diesel engine driving two centrifugal compressors. One of these compressors is for combustion air with fine air filtration, while the other is for cylinder cooling with much less filtration. The gas-generator engine has a bore of 4¼-in. diameter and a stroke of 5⅞ in. × 2. The engine turns at 2340 rpm, and the combustion air compressor turns at 37,000 rpm while the cooling air compressor turns 17,000 rpm. The cylinder is cooled with air at nearly the supercharge level and at an equivalent temperature because this air later does work on the turbine. The cooling airflow is about 3½ times the combustion airflow. These two airstreams join in a plenum chamber downstream from the engine, and the mixture temperature is about 500 F. This hot gas stream then goes to the power turbine, which is mechanically free of the gas generator.
Technical Paper

Optimizing the Design of the Battery-Starter/Generator System

1971-02-01
710392
Aircraft starting and generating systems heretofore have been largely the result of joining together available components. Recent studies have demonstrated that substantial benefits in weight, cost, size, and performance may be realized through a total system approach. This paper identifies the types of information required, and the methods of system analysis employed, to design an optimized system.
Technical Paper

Progress in SP-100 Tribological Coatings

1992-08-03
929235
The SP-100 reactor will operate at temperatures up to 1500K in high vacuum. Development of bearing coatings is necessary to avoid self welding and/or galling of moving components. No experience base exists for these conditions-the early SNAP (Space Nuclear Auxiliary Power) program requirements were over 400K lower with shorter lifetime requirements. To address the SP-100 needs, a tribology development program has been established at GE to investigate candidate coating materials. Materials were selected based on their high thermodynamic stability, high melting point, compatibility with the substrate, and coefficients of thermal expansion similar to niobium-1% zirconium - the candidate structural material for SP-100. An additional requirement was that the deposition processes should be commercially available to coat large components.
Technical Paper

Quiet Clean Short-Haul Experimental Engine (QCSEE) Design Rationale

1975-02-01
750605
The principal design features of the NASA QCSEE UnderThe-Wing and Over-The-Wing powered lift propulsion systems are given. In the UTW engine, these include noise reduction features, a variable pitch low pressure ratio fan, a fan drive reduction gear, an advanced core and low pressure turbine with a low pollution combustor, a digital control, and advanced composite construction for the inlet, fan frame, fan exhaust duct, and variable area fan exhaust nozzle. The OTW engine is similar but has higher fan pressure and a fixed pitch fan. Both engines are scheduled to be fabricated and tested starting in 1976.
Technical Paper

SP-100 Early Flight Mission Designs

1992-08-03
929447
Early flight mission objectives can be met with a Space Reactor Power System (SRPS) using thermoelectric conversion in conjunction with fast spectrum, lithium-cooled reactors. This paper describes two system design options using thermoelectric technology to accommodate an early launch. In the first of these options, radiatively coupled Radioisotope Thermoelectric Generator (RTG) unicouples are adapted for use with a SP-100-type reactor heat source (Deane 1992). Unicouples have been widely used as the conversion technology in RTGs and have demonstrated the long-life characteristics necessary for a highly reliable SRPS (Hemler 1992). The thermoelectric leg height is optimized in conjunction with the heat rejection temperature to provide a mass optimum 6-kWe system configured for launch on a Delta II launch vehicle. The flight-demonstrated status of this conversion technology provides a high confidence that such a system can be designed, assembled, tested, and launched by 1996.
X