Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Carbon Intensity Analysis of Hydrogen Fuel Cell Pathways

2021-03-02
2021-01-0047
A hydrogen economy is an increasingly popular solution to lower global carbon dioxide emissions. Previous research has been focused on the economic conditions necessary for hydrogen to be cost competitive, which tends to neglect the effectiveness of greenhouse gas mitigation for the very solutions proposed. The holistic carbon footprint assessment of hydrogen production, distribution, and utilization methods, otherwise known as “well-to-wheels” carbon intensity, is critical to ensure the new hydrogen strategies proposed are effective in reducing global carbon emissions. When looking at these total carbon intensities, however, there is no single clear consensus regarding the pathway forward. When comparing the two fundamental technologies of steam methane reforming and electrolysis, there are different scenarios where either technology has a “greener” outcome.
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
Technical Paper

A Method for Determining Mileage Accumulation for Robustness Validation of Advanced Driver Assistance Systems (ADAS) Features

2024-04-09
2024-01-1977
Robustness testing of Advanced Driver Assistance Systems (ADAS) features is a crucial step in ensuring the safety and reliability of these systems. ADAS features include technologies like adaptive cruise control, lateral and longitudinal controls, automatic emergency braking, and more. These systems rely on various sensors, cameras, radar, lidar, and software algorithms to function effectively. Robustness testing aims to identify potential vulnerabilities and weaknesses in these systems under different conditions, ensuring they can handle unexpected scenarios and maintain their performance. Mileage accumulation is one of the validation methods for achieving robustness. It involves subjecting the systems to a wide variety of real-world driving conditions and driving scenarios to ensure the reliability, safety, and effectiveness of the ADAS features.
Technical Paper

A Robust Preignition Rating Methodology: Evaluating the Propensity to Establish Propagating Flames under Real Engine Conditions

2017-10-08
2017-01-2241
In this work, an experimental and analysis methodology was developed to evaluate the preignition propensity of fuels and engine operating conditions in an SI engine. A heated glow plug was introduced into the combustion chamber to induce early propagating flames. As the temperature of the glowplug varied, both the fraction of cycles experiencing these early flames and the phasing of this combustion in the engine cycle varied. A statistical methodology for assigning a single-value to this complex behavior was developed and found to have very good repeatability. The effects of engine operating conditions and fuels were evaluated using this methodology. While this study is not directly studying the so-called stochastic preignition or low-speed preignition problem, it studies one aspect of that problem in a very controlled manner.
Technical Paper

A Study of Material Compatibility With Deionized Water

2003-03-03
2003-01-0804
Deionized (DI) water is being used for humidification and cooling on some fuel cell designs. This highly purified water is corrosive, yet the high purity is required to maintain the function and durability of the fuel cell. A study of the deionized water system was undertaken to determine the effect of various materials on water quality, and also to determine the effect of deionized water on each material. The test setup was designed to circulate fluid from a reservoir, similar to an actual application. The fluid temperature, pressure, and flow rate were controlled. The resistivity of the water was observed and recorded. Pre- and post-testing of the water and the materials was performed. The goal is to achieve system cleanliness and durability similar to a stainless steel system using lighter, less expensive materials. This paper describes the test setup, test procedures, and the overall results for the eight materials tested.
Technical Paper

Aerodynamic Development of the 2019 Chevrolet Corvette C7 ZR1

2019-04-02
2019-01-0665
This paper presents an overview of the aerodynamic development of the 2019 Chevrolet Corvette C7 ZR1. Extensive wind tunnel testing and computational fluid dynamics simulations were completed to engineer the ZR1’s aerodynamics to improve lift-to-drag efficiency and track capability over previous Corvette offerings. The ZR1 architecture changes posed many aerodynamic challenges including increased vehicle cooling, strict packaging demands, wider front track width, and aggressive exterior styling. Through motorsports-inspired aerodynamic development, the ZR1 was engineered to overcome these challenges through the creation of new devices such as a raised rear wing and front underwing. The resulting Standard ZR1 achieved a top speed of 212 mph making it the fastest Corvette ever [1]. Optionally, the ZR1 with the ZTK Performance Package provides the highest downforce of any Corvette, generating approximately 950 pounds at the ZTK’s top speed [1].
Technical Paper

Application of a Machine Learning Approach for Selective Catalyst Reduction Catalyst 3D-CFD Modeling: Numerical Method Development and Experimental Validation

2023-08-28
2023-24-0014
Internal combustion engines (ICEs) exhaust emissions, particularly nitrogen oxides (NOx), have become a growing environmental and health concern. The biggest challenge for contemporary ICE industry is the development of clean ICEs, and the use of advanced design tools like Computational Fluid Dynamics (CFD) simulation is paramount to achieve this goal. In particular, the development of aftertreatment systems like Selective Catalyst Reduction (SCR) is a key step to reduce NOx emissions, and accurate and efficient CFD models are essential for its design and optimization. In this work, we propose a novel 3D-CFD methodology, which uses a Machine Learning (ML) approach as a surrogate model for the SCR catalyst chemistry, which aims to enhance accuracy of the simulations with a moderate computational cost. The ML approach is trained on a dataset generated from a set of 1D-CFD simulations of a single channel of an SCR catalyst.
Technical Paper

Calculations of Wind Tunnel Circuit Losses and Speed with Acoustic Foams

2008-04-14
2008-01-1203
The GM Aerodynamics Laboratory (GMAL) was modified in 2001 to reduce the background noise level and provide a semi-anechoic test section for wind noise testing. The walls and ceiling of the test section were lined with acoustic foam and foam-filled turning vanes were installed in the corners. Portions of the wind tunnel circuit were also treated with fiberglass material covered by perforated sheet metal panels. High skin drag due to roughness of the foam surfaces, along with high blockage due to the large turning vanes, increased the wind tunnel circuit losses so that the maximum wind speed in the test section was reduced. The present study calculates the averaged total pressure losses at three locations to evaluate the reductions in skin drag and blockage from proposed modifications to the circuit, which were intended to increase the test section wind speed without compromising noise levels.
Technical Paper

Correlation of Detailed Hydrocarbon Analysis with Simulated Distillation of US Market Gasoline Samples and its Effect on the PEI-SimDis Equation of Calculated Vehicle Particulate Emissions

2023-04-11
2023-01-0298
Several predictive equations based on the chemical composition of gasoline have been shown to estimate the particulate emissions of light-duty, internal combustion engine (ICE) powered vehicles and are reviewed in this paper. Improvements to one of them, the PEISimDis equation are detailed herein. The PEISimDis predictive equation was developed by General Motor’s researchers in 2022 based on two laboratory gas chromatography (GC) analyses; Simulated Distillation (SimDis), ASTM D7096 and Detailed Hydrocarbon Analysis (DHA), ASTM D6730. The DHA method is a gas chromatography mass spectroscopy (GC/MS) methodology and provides the detailed speciation of the hundreds of hydrocarbon species within gasoline. A DHA’s aromatic species from carbon group seven through ten plus (C7 – C10+) can be used to calculate a Particulate Evaluation Index (PEI) of a gasoline, however this technique takes many hours to derive because of its long chromatography analysis time.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Technical Paper

Development of ECE R51.03 Noise Emission Regulation

2017-06-05
2017-01-1893
This paper will examine the regulatory development process, discuss the technical principles of the Economic Commission for Europe (ECE), R51.03 test, and discuss the overall objectives of the ECE R51.03 noise emission regulation. The development of this global noise emission regulation was a multi-stakeholder process which has resulted in new test procedures and new noise emission regulation principles. New test procedures based on ISO 362-1:2015 move the test basis to representative in-use noise emission, independent of vehicle propulsion technology. As part of the regulatory development, a monitoring program was conducted by the European Union to assess the applicability of the proposed test to provide representative vehicle noise emission results. The monitoring results also provided the basis to determine equivalent stringency between the test procedures of ECE R51.02 and R51.03.
Technical Paper

Development of Evaluation Methods for Steering Loss of Assist

2019-04-02
2019-01-1236
Loss of power steering assist (LoA) is viewed as a potential hazard in certain vehicle operational scenarios. Despite the importance of this steering failure mode, few published test protocols for the objective or subjective evaluation of vehicle performance in a loss of assist situation exist. The first part of this paper examines five of the key steering failure modes that can result in LoA and discusses why LoA persists as a key industry challenge. The second part analyzes the situational dynamics affecting vehicle controllability during a LoA event and proposes a subjective evaluation driving course that facilitates evaluations in various LoA scenarios. A corresponding objective test procedure and metric is also proposed. These evaluation methods support consistent performance evaluation of physical vehicles while also enabling the prediction of vehicle characteristics early in the vehicle development process (VDP).
Technical Paper

Development of Transmission Hardware-in-the-Loop Test System

2003-03-03
2003-01-1027
The automotive industry has long relied on vehicle testing to evaluate drive train components for new vehicle applications. In the past it has been impossible to fully evaluate components such as transmissions in a laboratory environment using electric motors as prime movers and absorbers. Although some durability and performance testing can be accomplished on such test stands it is impossible to perform high fidelity controller calibrations, durability tests, and NVH evaluations. Since the electric motors on these test stands cannot duplicate the exact characteristics of an engine such as inertia and firing pulses many manufacturers have resorted to vehicle testing or engine driven testing. Vehicle and engine based tests have many downfalls that could be avoided through the use of a laboratory based test system with electric prime movers. Vehicle testing with human drivers is often subjectively controlled and the exact test conditions are often unrepeatable.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Technical Paper

Enabling Powertrain Variants through Efficient Controls Development

2014-04-01
2014-01-1160
The paper examines how the issue of lengthy development times can be mitigated by adopting a multivariable physics based control method for the development and deployment of complex engine control algorithms required for modern diesel engines equipped with Lean NOx Trap aftertreatment technology. The proposed approach facilitates manufacturers to consider lower cost powertrain configurations for selected markets while maintaining higher performance configurations for other markets. The contribution includes on-engine results from joint work between General Motors and Honeywell. The Honeywell OnRAMP Design Suite which applies model predictive control techniques was used for model identification, control design (using model predictive control) and its calibration. With no prior work on the engine this process of calibrating an engine model and achieving transient drive cycle control on the engine required ten days in the test cell and five days of offline work using the OnRAMP software.
Technical Paper

Engine Component Effects on Spark-Ignition Caused Radio Frequency Interference (RFI)

2007-04-16
2007-01-0360
The objective of this paper is to propose a new model in the identification of a contributing factor to the generation of Radio Frequency Interference (RFI) due to the operation of a spark-ignited engine. This model incorporates parameters in the electrical operation of the ignition system components and their interaction with the engine mechanical structure, which is also used as a circuit component (the ignition system “ground”). T he model was developed as a result of analysis of numerous studies that have been conducted over the years in an attempt to identify why RFI characteristics can differ when using identical components on different engines, or locating the components in different locations on identical engines. This situation is a problem due to the resulting uncertainty with respect to the determination of what is the optimum vehicle ignition system configuration to meet all electrical and RFI or electromagnetic compatibility (EMC) requirements.
Journal Article

Estimation of Elemental Composition of Diesel Fuel Containing Biodiesel

2013-10-14
2013-01-2600
Carbon, hydrogen and oxygen are major elements in vehicle fuels. Knowledge of fuels elemental composition is helpful in addressing its performance characteristics. Carbon, hydrogen and oxygen composition is an important parameter in engine calibration affecting vehicle performance, emissions and fuel economy. Biodiesel, a fuel comprised of mono-alkyl esters of long-chain fatty acids also known as Fatty Acid Methyl Esters(FAME), derived from vegetable oils or animal fats, has become an important commercial marketplace automotive fuel in the United States (US) and around the world over last few years. FAME biodiesels have many chemical and physical property differences compared to conventional petroleum based diesel fuels. Also, the properties of biodiesel vary based on the feedstock chosen for biodiesel production. One of the key differences between petroleum diesel fuels and biodiesel is the oxygen content.
Technical Paper

Evaluation of the Ignition Hazard Posed by Onboard Refueling Vapor Recovery Canisters

2001-03-05
2001-01-0731
ORVR (Onboard Refueling Vapor Recovery) canisters trap vapors during normal operations of a vehicle's engine, and during refueling. This study evaluates the relative risks involved should a canister rupture in a crash. A canister impactor was developed to simulate real-world impacts and to evaluate the canisters' rupture characteristics. Numerous performance aspects of canisters were evaluated: the energy required to rupture a canister; the spread of carbon particles following rupture; the ease of ignition of vapor-laden particles; the vapor concentration in the area of ruptured, vapor-laden canisters; and the potential of crashes to rupture and ignite canisters. Results from these five items were combined into a risk analysis.
Technical Paper

Experimental Characterization of the Unsteady Flow Field behind Two outside Rear View Mirrors

2008-04-14
2008-01-0476
The unsteady flow fields behind two different automobile outside side rear view mirrors were examined experimentally in order to obtain a comprehensive data base for the validation of the ongoing computational investigation effort to predict the aero-acoustic noise due to the outside rear view mirrors. This study is part of a larger scheme to predict the aero-acoustic noise due to various external components in vehicles. To aid with the characterization of this complex flow field, mean and unsteady surface pressure measurements were undertaken in the wake of two mirror models. Velocity measurements with particle image velocimetry were also conducted to develop the mean velocity field of the wake. Two full-scale mirror models with distinctive geometrical features were investigated.
Technical Paper

Fast Gas Analyzer Observations of Stochastic Preignition Events

2019-04-02
2019-01-0254
The goal of this study was to generate exhaust fast gas data that could be used to identify phenomena that occur before, during, and after stochastic preignition (SPI), also called low-speed preignition (LSPI), events. Crank angle resolved measurement of exhaust hydrocarbons, NO, CO, and CO2 was performed under engine conditions prone to these events. Fuels and engine operating strategies were varied in an attempt to understand similarities and differences in SPI-related behavior that may occur between them. Several different uncommon (typically occurring in less than 1% of engine cycles) features of the fast gas data were identified, and the correlations between them and SPI events were explored. Although the thresholds used to define and identify these observations were arbitrary, they provided a practical means of identifying behavior in the fast gas data and correlating it to SPI occurrence.
X