Refine Your Search

Topic

Author

Search Results

Journal Article

A Critical Assessment of Factors Affecting the Flammability of R-1234yf in a Frontal Collision

2014-04-01
2014-01-0419
An evaluation methodology has been developed for assessing the suitability of R-1234yf in vehicles. This relates primarily to evaluating the flammability of R-1234yf in the engine compartment during a frontal collision. This paper will discuss the process followed in the methodology, the technical rationale for this process, and the results of the analysis. The specific types of analysis included in the methodology are: exhaust-system thermal characterization, computer simulated crash tests, actual crash tests, teardown and examination of crashed parts, and releases of refrigerant onto hot exhaust manifolds. Each type of analysis was logically ordered and combined to produce a comprehensive evaluation methodology. This methodology has been applied and demonstrates that R-1234yf is difficult to ignite when factors that occur in frontal crashes are simultaneously considered.
Technical Paper

A Hardware-in-the-Loop (HIL) Bench Test of a GT-Power Fast Running Model for Rapid Control Prototyping (RCP) Verification

2016-04-05
2016-01-0549
A GT-Power Fast Run Model simplified from detail model for HIL is verified with a bench test using the dSPACE Simulator. Firstly, the conversion process from a detailed model to FRM model is briefly described. Then, the spark timing, fuel pulse with control for FAR, and torque level control are developed for proof of concept. Moreover a series of FRM/Simulink co-simulation and HIL tests are conducted. In the summary, the test results are presented and compared with GT detailed model simulations. The test results show that the FRM/dSPACE HIL stays consistent in most variables of interest under 0.7-0.9 real-time factor condition between 1000 - 5000 RPM. The same steady-state can be reached by RCP controllers or with GT-Power internal controllers. The transient states are close using different control algorithm. The main purpose of HIL application is achieved, despite inconsistencies in performance data like fuel consumption.
Technical Paper

A Rough Road Ride Simulation Assessment with Flexible Vehicle Body

2014-04-01
2014-01-0112
A rough road ride assessment provides an insightful evaluation of vehicle responses beyond the frequency range of suspension or steering modes. This is when body structure influence on the vehicle performance can be detected by vehicle occupants. In this paper, a rough road is used to evaluate vehicle ride performance and multi-body simulation (MBS) models are developed along with finite-element (FE) representations of the vehicle body and structure. To produce high fidelity simulation results in the frequency range of interest, various vehicle subsystem modeling contents are examined. A case study of a vehicle model with two different structures is provided. Time histories and frequency based analyses are used to obtain insights into the effects of body structure on vehicle responses. Finally, two metrics (‘Isolation’ and ‘Shake’) are used to distinguish the vehicle ride performance.
Technical Paper

AUTOSAR Software Platform Adoption: Systems Engineering Strategies

2014-04-01
2014-01-0289
AUTOSAR(AUTomotive Open System ARchitecture) establishes an industry standard for OEMs and the supply chain to manage growing complexity to the automotive electronics domain. Increased focus on software based features will prove to be a key differentiator between vehicle platforms. AUTOSAR serves to standardize automotive serial data communication protocols, interaction with respect to hardware peripherals within an ECU and allow ECU implementer to focus on development of unique customer focused features that distinguish product offerings. Adoption strategy and impact assessment associated with leveraging AUTOSAR for an E/E Architecture and the potential challenges that need to be considered will be described in this publication. This publication will also illustrate development strategies that need to be considered w.r.t deploying AUTOSAR like data exchange, consistency to BSW software implementation, MCAL drivers etc.
Technical Paper

Acoustic Performance Evaluation of Hood Liner Constructions

2015-06-15
2015-01-2206
In automotive noise control, the hood liner is an important acoustic part for mitigating engine noise. The random incidence absorption coefficient is used to quantify the component level acoustic performance. Generally, air gaps, type of substrate materials, density of the substrate materials and Air Flow Resistivity (AFR) of the cover scrim are the dominant control factors in the sound absorption performance. This paper describes a systematic experimental investigation of how these control factors affect flat sample performance. The first stage of this study is full factorial measurement based on current available solutions from sound absorber suppliers. The acoustic absorption of different hood liner constructions, with variations in materials, density, air gaps, and scrims was measured.
Journal Article

Adjoint-Driven Aerodynamic Shape Optimization Based on a Combination of Steady State and Transient Flow Solutions

2016-04-05
2016-01-1599
Aerodynamic vehicle design improvements require flow simulation driven iterative shape changes. The 3-D flow field simulations (CFD analysis) are not explicitly descriptive in providing the direction for aerodynamic shape changes (reducing drag force or increasing the down-force). In recent times, aerodynamic shape optimization using the adjoint method has been gaining more attention in the automotive industry. The traditional DOE (Design of Experiment) optimization method based on the shape parameters requires a large number of CFD flow simulations for obtaining design sensitivities of these shape parameters. The large number of CFD flow simulations can be significantly reduced if the adjoint method is applied. The main purpose of the present study is to demonstrate and validate the adjoint method for vehicle aerodynamic shape improvements.
Technical Paper

An Investigative Study of Sudden Pressure Increase Phenomenon Across the DPF

2014-04-01
2014-01-1516
Diesel particulate filter (DPF) is a widely used emission control device on diesel vehicles. The DPF captures the particulate matter coming from the engine exhaust and periodically burns the collected soot via the regeneration process. There are various trigger mechanisms for this regeneration, such as distance, time, fuel and simulation. Another method widely used in the industry is the pressure drop across the filter. During calibration, relation between the pressure sensor reading and soot mass in the filter is established. This methodology is highly effective in successful DPF operation as pressure sensor is a live signal that can account for any changes in engine performance over time or any unforeseen hardware failures. On the other hand, any erroneous feedback from the sensor can lead to inaccurate soot mass prediction causing unnecessary regenerations or even needless DPF plugging concerns.
Journal Article

Automatic Transmission Gear Ratio Optimization and Monte Carlo Simulation of Fuel Consumption with Parasitic Loss Uncertainty

2015-04-14
2015-01-1145
This investigation utilizes energy analysis and statistical methods to optimize step gear automatic transmissions gear selection for fuel consumption. A full factorial matrix of simulations using energy analysis was performed to determine the optimal number of gears and gear ratios that provide the best fuel consumption performance for a particular vehicle - engine application. The full factorial matrix setup as a design of experiment (DOE) was applied to five vehicle applications, each with two engines to examine the potential differences that variations in road load and engine characteristics might have on optimal transmission gearing selection. The transmission gearing options considered in the DOE were number of gears, launch gear ratio and top gear ratio. Final drive ratio was also included due to its global influence on vehicle performance and powertrain operating speeds and torque.
Technical Paper

B-Pillar Intrusion and Velocity Sensitivity Study for Side Impact Load Case

2011-10-06
2011-28-0109
In the early vehicle design stage math model, subsystems such as dummies, airbags and interior trims are generally not considered for structural evaluation. The objective of this study is to evaluate the B-pillar intrusion and velocity sensitivity in a side impact load case with respect to the dummies, airbags and interior trim. In this study four different vehicles were used to understand the B-pillar intrusion and velocity sensitivity trends. US NCAP lateral impact load case is used in this study. Five side impact load case analyses iterations, with different combinations of subsystems, were completed. Dummy inertia and interior trims play an important role for B-Pillar intrusion and velocity in side impact load case (USLINCAP). If the dummy and interior trim is not well defined in the CAE model, higher B-pillar intrusion and velocity will be predicted. This could vary from 10 to 25 %.
Journal Article

Control and Integration Challenges for Future Automatic Transmissions

2016-04-05
2016-01-1102
The ever-increasing regulatory requirement on CO2 emissions drives efficiency improvement of vehicle powertrain systems. In this context, three mega trends have been happening in the automotive transmission industry. First, future automatic transmissions will have more gear steps to offer a broader ratio spread and finer ratio steps, which may enable the engine to operate at its efficient regions more often. Second, engine downsizing with boosted power and flexible cylinder deactivation have been become the technology trend to achieve better thermal efficiency. These engine technologies demand improved transmission dampers with greater isolation capabilities to drive future transmission dampers to be equipped with softer springs. Third, future transmissions will be more efficient due to new architectures and incremental subsystem improvements.
Journal Article

Customer Focus in EPS Steering Feel Development

2014-04-01
2014-01-0148
The automotive industry is one of the most competitive enterprises in the world. Customers face an ever-expanding number of entries in each market segment vying for their business. Sales price, brand image, marketing, etc. all play a role in purchase decisions, but the factor distinguishing products that consistently perform in the market place is the ability to satisfy the customer. Steering character plays a critical role in the customer driving experience and can be one of the most heavily debated topics during a new vehicle program. The proliferation of EPS steering systems now allows engineers to calibrate steering feel to almost any desired specification. This raises a key question: What subjective & objective characteristics satisfy customers in a particular market segment?
Technical Paper

Development of a Small Rear Facing Child Restraint System Virtual Surrogate to Evaluate CRS-to-Vehicle Interaction and Fitment

2015-04-14
2015-01-1457
Automotive interior design optimization must balance the design of the vehicle seat and occupant space for safety, comfort and aesthetics with the accommodation of add-on restraint products such as child restraint systems (CRS). It is important to understand the range of CRS dimensions so that this balance can be successfully negotiated. CRS design is constantly changing. In particular, the introduction of side impact protection for CRS as well as emphasis on ease of CRS installation has likely changed key design points of many child restraints. This ever-changing target creates a challenge for vehicle manufacturers to assure their vehicle seats and occupant spaces are compatible with the range of CRS on the market. To date, there is no accepted method for quantifying the geometry of child seats such that new designs can be catalogued in a simple, straightforward way.
Technical Paper

Directional Mahalanobis Distance and Parameter Sensitivities

2016-04-05
2016-01-0289
Mahalanobis Distance (MD) is gaining momentum in many fields where classification, statistical pattern recognition, and forecasting are primary focus. It is a multivariate method and considers correlation relationships among parameters for computing generalized distance measure to separate groups or populations. MD is a useful statistic in multivariate analysis to test that an observed random sample is from a multivariate normal distribution. This capability alone enables engineers to determine if an observed sample is an outlier (defect) that falls outside the constructed (good) multivariate normal distribution. In Mahalanobis-Taguchi System (MTS), MD is suitably scaled and used as a measure of severity in abnormality assessment. It is obvious that computed MD depends on values of parameters observed on a random sample. All parameters may not equally impact MD. MD could be highly sensitive with respect to some parameters and less sensitive to some other parameters.
Technical Paper

Effect of High Levels of Boost and Recirculated Exhaust Gas on Diesel Combustion Characteristics at Part Load

2014-04-01
2014-01-1245
Future diesel combustion systems may operate with significantly higher levels of boost and EGR than used with present systems. The potential benefits of higher boost and EGR were studied experimentally in a single-cylinder diesel engine with capability to adjust these parameters independently. The objective was to study the intake and exhaust conditions with a more optimum combustion phasing to minimize fuel consumption while maintaining proper constraints on emissions and combustion noise. The engine was tested at four part-load operating points using a Design of Experiments (DOE) approach. Two of the operating points correspond to low-speed and low-load conditions relevant for the New European Driving Cycle (NEDC). The other two points focus on medium load conditions representative of the World-wide harmonized Light-duty Test Procedures (WLTP).
Journal Article

Effect of Prior Austenite Grain Size on Impact Toughness of Press Hardened Steel

2016-04-05
2016-01-0359
Impact toughness (or resistance to fracture) is a key material property for press hardened steel used in construction of the safety-critical elements of automotive body structures. Prior austenite grain size, as primarily controlled by the incoming microstructure and austenitization process, is a key microstructural feature that influences the impact toughness of press hardened steel. In this paper, a special Charpy V-notch impact test is developed to quantify the impact toughness of press hardened steel sheets with various prior austenite grain sizes, by stacking a number of thin sheets via mechanical riveting. Both the ductile-to-brittle transition temperature and upper shelf energy are analyzed in an effort to establish a correlation between impact toughness and prior austenite grain size. Within tested conditions, impact performance shows only a slight decrease as the prior austenitic grain size increases from 18 to 38 microns.
Technical Paper

Effects of Wind Speed and Longitudinal Direction on Fire Patterns from a Vehicle Fire in a Compact Car

2017-03-28
2017-01-1353
This paper compares the material consumption and fire patterns which developed on four nearly identical compact sedans when each was burned for exactly the same amount of time, but with different wind speed and direction during the burns. This paper will also compare the effects of environmental exposure to the fire patterns on the vehicles. The burn demonstrations were completed at an outdoor facility in southeast Michigan on four late model compact sedans. The wind direction was controlled by placing the subject vehicle with either the front facing into the wind, or rear facing into the wind. Two of the burns were conducted when the average observed wind speed was 5-6kph and two of the burns were conducted at an average observed wind speed of 19kph.
Journal Article

Electrical Architecture Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing

2014-04-01
2014-01-0320
In this paper, we propose algorithms for cost minimization of physical wires that are used to connect electronic devices in the vehicle. The wiring cost is one of the most important drivers of electrical architecture selection. Our algorithms perform wire routing from a source device to a destination device through harnesses, by selecting the optimized wire size. In addition, we provide optimized splice allocation with limited constraints. Based on the algorithms, we develop a tool which is integrated into an off-the-shelf optimization and workflow system-level design tool. The algorithms and the tool provide an efficient, flexible, scalable, and maintainable approach for cost analysis and architecture selection.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Journal Article

Fatigue Behavior of Aluminum Alloys under Multiaxial Loading

2014-04-01
2014-01-0972
Fatigue behavior of aluminum alloys under multiaxial loading was investigated with both cast aluminum A356-T6 and wrought alloy 6063-T6. The dominant multiaxial fatigue crack preferentially nucleates from flaws like porosity and oxide films located near the free surface of the material. In the absence of the flaws, the cracking/debonding of the second phase particles dominates the crack initiation and propagation. The number of cracked/debonded particles increases with the number of cycles, but the damage rate depends on loading paths. Among various loading paths studied, the circle loading path shows the shortest fatigue life due to the development of complex dislocation substructures and severe stress concentration near grain/cell boundaries and second phase particles.
Technical Paper

Fixed-Point Model Development Assistant Tool

2016-04-05
2016-01-0018
Development of the software using fixed-point arithmetic is known to be tedious and error-prone. Difficulty of selecting the correct data type can outwear software developers. The common retreats often sought after include manual calculation of the approximate ranges, exhaustive simulations with extreme input values and conservative development approach by using excessive word length. The first two retreats - manual calculation and exhaustive simulations - increase the software development time, and the third retreat - conservative development - leads to the excessive memory (RAM and ROM) utilization by the software. The model-based development environment such as the Simulink has graphical nature to the software with flow of data defined by connecting signal lines. The model-based software therefore gives an opportunity to trace signal flow in the software. Input-tracing method is presented to trace the flow of the input signals of the user selected block in the software model.
X