Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion

2001-09-24
2001-01-3612
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. The methodology judiciously uses a fluid mechanics code followed by a chemical kinetics code to achieve great reduction in the computational requirements; to a level that can be handled with current computers. In previous papers, our sequential, multi-zone methodology has been applied to HCCI combustion of short-chain hydrocarbons (natural gas and propane). Applying the same procedure to long-chain hydrocarbons (iso-octane) results in unacceptably long computational time. In this paper, we show how the computational time can be made acceptable by developing a segregated solver. This reduces the run time of a ten-zone problem by an order of magnitude and thus makes it much more practical to make combustion studies of long-chain hydrocarbons.
Technical Paper

A New Approach to System Level Soot Modeling

2005-04-11
2005-01-1122
A procedure has been developed to build system level predictive models that incorporate physical laws as well as information derived from experimental data. In particular a soot model was developed, trained and tested using experimental data. It was seen that the model could fit available experimental data given sufficient training time. Future accuracy on data points not encountered during training was estimated and seen to be good. The approach relies on the physical phenomena predicted by an existing system level phenomenological soot model coupled with ‘weights’ which use experimental data to adjust the predicted physical sub-model parameters to fit the data. This approach has developed from attempts at incorporating physical phenomena into neural networks for predicting emissions. Model training uses neural network training concepts.
Technical Paper

Design and Testing of a Prototype Hybrid-Electric Split-Parallel Crossover Sports Utility Vehicle

2007-01-16
2007-01-1068
The University of Wisconsin - Madison Hybrid Vehicle Team has designed, fabricated, tested and optimized a four-wheel drive, charge sustaining, split-parallel hybrid-electric crossover vehicle for entry into the 2006 Challenge X competition. This multi-year project is based on a 2005 Chevrolet Equinox platform. Trade-offs in fuel economy, greenhouse gas impact (GHGI), acceleration, component packaging and consumer acceptability were weighed to establish Wisconsin's Vehicle Technical Specifications (VTS). Wisconsin's Equinox, nicknamed the Moovada, utilizes a General Motors (GM) 110 kW 1.9 L CIDI engine coupled to GM's 6-speed F40 transmission. The rear axle is powered by a 65 kW Ballard induction motor/gearbox powered from a 44-module (317 volts nominal) Johnson Controls Inc., nickel-metal hydride hybrid battery pack. It includes a newly developed proprietary battery management algorithm which broadcasts the battery's state of charge onto the CAN network.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and DPF Regeneration Behavior Measurements for Two Different Regeneration Systems

2007-04-16
2007-01-1063
Three distinct types of diesel particulate matter (PM) are generated in selected engine operating conditions of a single-cylinder heavy-duty diesel engine. The three types of PM are trapped using typical Cordierite diesel particulate filters (DPF) with different washcoat formulations and a commercial Silicon-Carbide DPF. Two systems, an external electric furnace and an in-situ burner, were used for regeneration. Furnace regeneration experiments allow the collected PM to be classified into two categories depending on oxidation mechanism: PM that is affected by the catalyst and PM that is oxidized by a purely thermal mechanism. The two PM categories prove to contribute differently to pressure drop and transient filtration efficiency during in-situ regeneration.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and Real-Time DPF Filtration Efficiency Measurements During PM Filling Process

2007-04-16
2007-01-0320
An experimental study was performed to investigate diesel particulate filter (DPF) performance during filtration with the use of real-time measurement equipment. Three operating conditions of a single-cylinder 2.3-liter D.I. heavy-duty diesel engine were selected to generate distinct types of diesel particulate matter (PM) in terms of chemical composition, concentration, and size distribution. Four substrates, with a range of geometric and physical parameters, were studied to observe the effect on filtration characteristics. Real-time filtration performance indicators such as pressure drop and filtration efficiency were investigated using real-time PM size distribution and a mass analyzer. Types of filtration efficiency included: mass-based, number-based, and fractional (based on particle diameter). In addition, time integrated measurements were taken with a Rupprecht & Patashnick Tapered Element Oscillating Microbalance (TEOM), Teflon and quartz filters.
Journal Article

Detailed Effects of a Diesel Particulate Filter on the Reduction of Chemical Species Emissions

2008-04-14
2008-01-0333
Diesel particulate filters are designed to reduce the mass emissions of diesel particulate matter and have been proven to be effective in this respect. Not much is known, however, about their effects on other unregulated chemical species. This study utilized source dilution sampling techniques to evaluate the effects of a catalyzed diesel particulate filter on a wide spectrum of chemical emissions from a heavy-duty diesel engine. The species analyzed included both criteria and unregulated compounds such as particulate matter (PM), carbon monoxide (CO), hydrocarbons (HC), inorganic ions, trace metallic compounds, elemental and organic carbon (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and other organic compounds. Results showed a significant reduction for the emissions of PM mass, CO, HC, metals, EC, OC, and PAHs.
Technical Paper

Development and Experimental Study of a New Diesel Exhaust Particulate Trap System*

2000-10-16
2000-01-2846
Diesel exhaust particulate trap system is one of the most effective means to control diesel particulate emissions from diesel vehicles. In this paper, a recently developed diesel exhaust particulate trap system was described and experimentally studied. This system employed a wall-flow ceramic foam filter, which was made of silicon carbide or chromium oxide. And this system was equipped with a microwave heater for the purpose of filter regeneration. Engine dynamometer testing, vehicle bench testing and on-road evaluation of this system were conducted. The experiments studied on the filtration efficiency of this system, the effectiveness of filter regeneration, the power penalty of the vehicle, the ability of noise suppression of this system, and the durability of this particulate trap system. The experimental results showed that this diesel particulate trap system was effective, reliable, and durable.
Technical Paper

Effects of Alternative Fuels and Intake Port Geometry on HSDI Diesel Engine Performance and Emissions

2001-03-05
2001-01-0647
This research explored methods to reduce regulated emissions in a small-bore, direct-injection diesel engine. Swirl was used to influence mixing of the spray plumes, and alternative fuels were used to study the effects of oxygenated and water microemulsion diesel fuels on emissions. Air/fuel mixing enhancement was achieved in the running engine by blocking off a percentage of one of the two intake ports. The swirl was characterized at steady-state conditions with a flowbench and swirl meter. Swirl ratios of 1.85, 2.70, and 3.29 were studied in the engine tests at full load with engine speeds of 1303, 1757, and 1906 rev/min. Increased swirl was shown to have negative effects on emissions due to plume-to-plume interactions. Blends of No. 2 diesel and biodiesel were used to investigate the presence of oxygen in the fuel and its effects on regulated emissions. Pure No. 2 diesel fuel, a 15% and a 30% biodiesel blend (by weight) were used.
Technical Paper

Effects of Biodiesel Blended Fuels and Multiple Injections on D. I. Diesel Engines

1997-02-24
970218
Studies on the effects of methyl soyate (biodiesel) blends with #2 diesel fuel in conjunction with various high pressure injection schemes were conducted on a single cylinder version of the Caterpillar 3400 series heavy duty diesel engine. Engine operating conditions at both high and low loads were investigated. Experiments were performed over a range of injection timings allowing particulate versus NOx trade-off curves to be generated. Phillips 66 certified #2 diesel fuel was used as the baseline; mixtures of 20% and 40% by volume of methyl soyate with the baseline fuel were used as the biodiesel blends. A blend of 20% by volume octadecene (a hydrocarbon fuel that is representative of the biodiesel hydrocarbon's composition but without the oxygen) in #2 diesel fuel was also investigated to help determine the mechanisms of emissions reduction.
Technical Paper

HC-SCR Catalyst Performance in Reducing NOx Emissions from a Diesel Engine Running Heavy Duty Transient Test Cycles with Diesel Fuel and Ethanol as the Reductants

2009-11-02
2009-01-2775
A unique silver/alumina selective catalytic reduction (SCR) catalyst which used hydrocarbons (HC-SCR) to reduce NOx emissions was investigated. Diesel fuel or ethanol were used as the reductants to evaluate catalyst performance. Several full size 5.0L monolith 2.0 and 3.0 wt.% Ag2O-Al2O3 catalysts were created. Testing was conducted using a 6.6L Duramax turbocharged heavy duty diesel engine. Dynamometer testing on the heavy duty FTP and SET 13 transient test cycles was conducted. The NOx conversion efficiency was evaluated as a function of catalyst volume, inlet cone angle, hydrocarbon to NOx ratio (HC:NOx), and space velocity. Oxygen effects on the NOx reaction and the HC slip past the HC-SCR catalyst were also determined. An FTIR was used to evaluate unregulated emissions. Testing on the heavy duty FTP and SET 13 test cycles, with diesel fuel as the reductant, resulted in a 60% and 65% NOx conversion reduction respectively.
Journal Article

Heavy-Duty RCCI Operation Using Natural Gas and Diesel

2012-04-16
2012-01-0379
Many recent studies have shown that the Reactivity Controlled Compression Ignition (RCCI) combustion strategy can achieve high efficiency with low emissions. However, it has also been revealed that RCCI combustion is difficult at high loads due to its premixed nature. To operate at moderate to high loads with gasoline/diesel dual fuel, high amounts of EGR or an ultra low compression ratio have shown to be required. Considering that both of these approaches inherently lower thermodynamic efficiency, in this study natural gas was utilized as a replacement for gasoline as the low-reactivity fuel. Due to the lower reactivity (i.e., higher octane number) of natural gas compared to gasoline, it was hypothesized to be a better fuel for RCCI combustion, in which a large reactivity gradient between the two fuels is beneficial in controlling the maximum pressure rise rate.
Technical Paper

Investigation of Platinum and Cerium from Use of a FBC

2006-04-03
2006-01-1517
Fuel-borne catalysts (FBC) have demonstrated efficacy as an important strategy for integrated diesel emission control. The research summarized herein provides new methodologies for the characterization of engine-out speciated emissions. These analytical tools provide new insights on the mode of action and chemical forms of metal emissions arising from use of a platinum and cerium based commercial FBC, both with and without a catalyzed diesel particulate filter. Characterization efforts addressed metal solubility (water, methanol and dichloromethane) and particle size and charge of the target species in the water and solvent extracts. Platinum and cerium species were quantified using state-of-the-art high resolution plasma mass spectrometry. Liquid-chromatography-triple quad mass spectrometry techniques were developed to quantify potential parent Pt-FBC in the PM extracts. Speciation was examined for emissions from cold and warm engine cycles collected from an engine dynamometer.
Technical Paper

Investigation of Premixed Fuel Composition and Pilot Reactivity Impact on Diesel Pilot Ignition in a Single-Cylinder Compression Ignition Engine

2023-04-11
2023-01-0282
This work experimentally investigates the impact of premixed fuel composition (methane/ethane, methane/propane, and methane/hydrogen mixtures having equivalent chemical energy) and pilot reactivity (cetane number) on diesel-pilot injection (DPI) combustion performance and emissions, with an emphasis on the pilot ignition delay (ID). To support the experimental pilot ignition delay trends, an analysis technique known as Mixing Line Concept (MLC) was adopted, where the cold diesel surrogate and hot premixed charge are envisioned to mix in a 0-D constant volume reactor to account for DPI mixture stratification. The results show that the dominant effect on pilot ignition is the pilot fuel cetane number, and that the premixed fuel composition plays a minor role. There is some indication of a physical effect on ignition for cases containing premixed hydrogen.
Technical Paper

Radio-Frequency (RF) Technology for Filter Microwave Regeneration System*

2000-10-16
2000-01-2845
A new diesel exhaust particulate trap system was developed to control diesel particulate emissions from buses in large cities in China. This system was equipped with a microwave heater for the purpose of filter regeneration. To achieve effective and efficient filter regeneration, a radio-frequency (RF) technology was employed. The RF technology measured the amount of particulate trapped in filter, and it controlled filter regeneration using microwave signal. In this paper, the on-line diesel particulate measurement system was described, and experimental study of this measurement system was reported. The experimental results proved the effectiveness of the RF technology in the application of this diesel particulate trap system.
Technical Paper

Rolling Regeneration Trap for Diesel Particulate Control

2003-10-27
2003-01-3178
One way to achieve low temperature regeneration on diesel particulate traps is to employ NO2 as the oxidant. However, the engine may not produce sufficient NOx to achieve the required particulate regeneration. An RRT (rolling regeneration trap) was proposed as a way to enhance the effective concentration in diesel engine exhaust. The RRT uses catalyzed ceramic foam, which allows repeated use of existing NOx in the exhaust stream. The ceramic foam is a filter itself: thus, it can reduce the particulate loading on the wall-flow filter, which is more prone to plugging by the particulate deposits. Furthermore, the presence of particulate matter in the catalyzed section circumvents the high temperature limit imposed by thermodynamic equilibrium of a simple NO+NO2 +O2 system. However, experimental results revealed that the regeneration efficiency on the wall-flow section was very low and NO2 slip is an issue.
Technical Paper

The Effect of Ethanol Fuels on the Power and Emissions of a Small Mass-Produced Utility Engine

2020-01-24
2019-32-0607
The effect of low level ethanol fuel on the power and emissions characteristics was studied in a small, mass produced, carbureted, spark-ignited, Briggs and Stratton Vanguard 19L2 engine. Ethanol has been shown to be an attractive renewable fuel by the automotive industry; having anti-knock properties, potential power benefits, and emissions reduction benefits. With increasing availability and the possible mandates of higher ethanol content in pump gasoline, there is interest in exploring the effect of using higher content ethanol fuels in the small utility engine market. The fuels in this study were prepared by gravimetrically mixing 98.7% ethanol with a balance of 87 octane no-ethanol gasoline in approximately 5% increments from pure gasoline to 25% ethanol. Alcor Petrolab performed fuel analysis on the blended fuels and determined the actual volumetric ethanol content was within 2%.
X