Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

A Bistate Control of a Semiactive Automotive Suspension

1999-03-01
1999-01-0725
The purpose of this paper is to develop and experimentally validate a practical and effective technique for the automatic regulation of a hydraulic semiactive vibration absorber (SAVA) for automobiles. The work relies on a consistent hydraulic model of the actuator dynamics that includes the effects of fluid compressibility and a nonlinear viscous loss characteristic. A bistate control algorithm is developed using a Lyapunov approach that seeks to dissipate the energy of the system. The performance of the proposed semiactive damper design on a quarter car model of an automobile suspension is established experimentally on a vibrating test stand. The work provides evidence that the inexpensive hardware design makes it possible to improve the ride and handling performance.
Technical Paper

A Sampling Period Decision for Robust Control of Distributed Control System using In-Vehicle Network

2004-03-08
2004-01-0211
This paper presents a preliminary study of a sampling period decision for robust control of a distributed control system based on an in-vehicle network with three types of data (real-time synchronous data, real-time asynchronous data, and nonreal-time asynchronous data). The architecture of automotive systems is currently changing from a number of standalone electronic control units (ECUs) to a functionally integrated distributed system which is linked by a network. The control performance of the integrated networked control system can be changed by the characteristics of time delays among the application ECUs. A basic parameter for a scheduling method of the networked control systems, a maximum allowable delay bound is used, which guarantees stability of the networked control system, and it is derived from the characteristics of the given plant using presented theorems.
Technical Paper

A Vehicle-Simulator-based Evaluation of Combined State Estimator and Vehicle Stability Control Algorithm

2005-04-11
2005-01-0383
The performance of an integrated Vehicle Stability Control (VSC) system depends on not only control logic itself, but also the performance of state estimator and control threshold. In conventional VSCs, a control threshold is designed by vehicle characteristics and is centered on average drivers. A VSC algorithm with variable control threshold has been investigated in this study. The control threshold can be determined by phase plane analysis of side slip angle and angular velocity. Vehicle side slip angle estimator has been evaluated using test data. Estimated side slip angle has been used in the determination of the control threshold. The performance of the proposed VSC algorithm has been investigated by human-in-the-loop simulation using a vehicle simulator. The simulation results show that the control threshold has to be determined with respect to the driver steering characteristics.
Technical Paper

A study on estimation of stuck probability in off-road based on AI

2024-04-09
2024-01-2866
After the COVID-19 pandemic, leisure activities and cultures have undergone significant transformations. Particularly, there has been an increased demand for outdoor camping. Consequently, the need for capabilities that allow vehicles to navigate not only paved roads but also unpaved and rugged terrains has arisen. In this study, we aim to address this demand by utilizing AI to introduce a 'Stuck Probability Estimation Algorithm' for vehicles on off-road. To estimate the 'Stuck Probability' of a vehicle, a mathematical model representing vehicle behavior is essential. The behavior of off-road driving vehicles can be characterized in two main aspects: firstly, the harshness of the terrain (how uneven and rugged it is), and secondly, the extent of wheel slip affecting the vehicle's traction.
Technical Paper

Closed-Loop Evaluation of Vehicle Stability Control (VSC) Systems using a Combined Vehicle and Human Driving Model

2004-03-08
2004-01-0763
This paper presents a closed-loop evaluation of the Vehicle Stability Control (VSC) systems using a vehicle simulator. Human driver-VSC interactions have been investigated under realistic operating conditions in the laboratory. Braking control inputs for vehicle stability enhancement have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. A driving simulator which consists of a three-dimensional vehicle dynamic model, interface between human driver and vehicle simulator, three-dimensional animation program and a visual display has been validated using actual vehicle driving test data. Real-time human-in-the loop simulation results in realistic driving situations have shown that the proposed controller reduces driving effort and enhances vehicle stability.
Technical Paper

Collision Probability Field for Motion Prediction of Surrounding Vehicles Using Sensing Uncertainty

2020-04-14
2020-01-0697
Intelligent driving assistant systems have been studied meticulously for autonomous driving. When the systems have the responsibility for driving itself, such as in an autonomous driving system, it should be aware of its’ surroundings including moving vehicles and must be able to evaluate collision risk for the ego vehicle's planned motion. However, when recognizing surrounding vehicles using a sensor, the measured information has uncertainty because of many reasons, such as noise and resolution. Many previous studies evaluated the collision risk based on the probabilistic theorem which the noise is modeled as a probability density function. However, the previous probabilistic solutions could not assess the collision risk and predict the motion of surrounding vehicles at the same time even though the motion is possible to be changed by the estimated collision risk.
Technical Paper

Component Sizing Optimization Based on Technological Assumptions for Medium-Duty Electric Vehicles

2024-04-09
2024-01-2450
In response to the stipulations of the Energy Policy and Conservation Act and the global momentum toward carbon mitigation, there has been a pronounced tightening of fuel economy standards for manufacturers. This stricter regulation is coupled with an accelerated transition to electric vehicles, catalyzed by advances in electrification technology and a decline in battery cost. Improvements in the fuel economy of medium- and heavy-duty vehicles through electrification are particularly noteworthy. Estimating the magnitude of fuel economy improvements that result from technological advances in these vehicles is key to effective policymaking. In this research, we generated vehicle models based on assumptions regarding advanced transportation component technologies and powertrains to estimate potential vehicle-level fuel savings. We also developed a systematic approach to evaluating a vehicle’s fuel economy by calibrating the size of the components to satisfy performance requirements.
Technical Paper

Effect of Air-Conditioning on Driving Range of Electric Vehicle for Various Driving Modes

2013-03-25
2013-01-0040
Under the present effort to decrease of air pollution, Electric Vehicles (EVs) are appeared and developed. EVs are running by using electrical energy resource by supporting of battery packs. The effect of air-conditioning has proven to be a serious problem to the point of battery depleting. Thus in the present study, effects of air conditioning (i.e., cooling and heating) on driving range were studied for various driving modes including UDDS, HWFET, and NEDC. The result shows that EV energy efficiency is opposing the usual trend of internal combustion engine vehicle's fuel consumption in highway driving mode than urban driving mode. In highway mode, EV energy efficiency and driving range also decease than urban driving mode. This status was influenced on motor characteristic which torque decrease in high speed rotating conditions and highway driving mode consist of constant speed velocity so it couldn't use the regenerative braking system effectively.
Technical Paper

Fault Detection Algorithm Design for Electro-Mechanical Brake

2009-04-20
2009-01-1219
Electro-Mechanical Brake (EMB) systems can provide improved braking and stability functions such as ABS, EBD, TCS, ESC, BA, ACC, etc. For the implementation of the EMB systems, reliable and robust fault detection algorithm is required. In this study, a model-based fault detection algorithm is designed based on the analytical redundancy method in order to monitor possible faults in EMB systems. The performance of the proposed model-based fault detection algorithm is verified in simulations. The effectiveness of the proposed algorithm is demonstrated in various faulty cases.
Journal Article

Formal Design Process for FlexRay-Based Control Systems with Network Parameter Optimization

2008-04-14
2008-01-0277
FlexRay is a deterministic and fault-tolerant in-vehicle network(IVN) protocol. It is expected to become a practical standard for automotive communication systems. According to the FlexRay protocol specifications, there are about 60 configurable parameters which should be determined in the design phases. The parameters increase the complexities of FlexRay-based control system development. In this study, we are suggesting a formal design process for FlexRay-based control systems, which is focused on network parameter optimization. We introduce design phases from functional system models to implementations. These phases present formal ways for task allocation, node assignment, network configuration, and implementations. In the network configuration phase, two FlexRay core parameters are selected to optimize network design. Optimal methods of the core parameters provide concise guide lines for optimal communication cycle length and optimal static slot length.
Technical Paper

Implementation-Conscious Rapid Control Prototyping Platform for Advanced Model-Based Engine Control

2003-03-03
2003-01-0355
In the extremely cost-sensitive and competitive automotive industry, manufacturers and suppliers are constantly searching for means to reduce both time-to-market and development costs. As a kind of solution to satisfy these requirements, Rapid-control prototyping (RCP) has established itself as viable technology, albeit not everywhere yet. One big gap in the development process, however, is the transfer form RCP to a target implementation with all its limitations. This paper presents a new RCP platform, which aims to provide a consistent environment both at the RCP step and at the target code implementation step. To achieve this goal, the proposed prototyping system is designed very similar to the real production ECU as much as possible, and it supports all the features, which are needed in the RCP.
Technical Paper

Intention Aware Motion Planning with Model Predictive Control in Highway Merge Scenario

2019-03-25
2019-01-1402
Human drivers navigate by continuously predicting the intent of road users and interacting with them. For safe autonomous driving, research about predicting future trajectory of vehicles and motion planning based on these predictions has drawn attention in recent years. Most of these studies, however, did not take into account driver’s intentions or any interdependence with other vehicles. In order to drive safely in real complex driving situations, it is essential to plan a path based on other driver’s intentions and simultaneously to estimate the intentions of other road user with different characteristics as human drivers do. We aim to tackle the above challenges on highway merge scenario where the intention of other road users should be understood. In this study, we propose an intention aware motion planning method using finite state machine and model predictive control without any vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications.
Technical Paper

Model Based Optimization of Supervisory Control Parameters for Hybrid Electric Vehicles

2008-04-14
2008-01-1453
Supervisory control strategy of a hybrid electric vehicle (HEV) provides target powers and operating points of an internal combustion engine and an electric motor. To promise efficient driving of the HEV, it is needed to find the proper values of control parameters which are used in the strategy. However, it is very difficult to find the optimal values of the parameters by doing experimental tests, since there are plural parameters which have dependent relationship between each other. Furthermore variation of the test results makes it difficult to extract the effect of a specific parameter change. In this study, a model based parameter optimization method is introduced. A vehicle simulation model having the most of dynamics related to fuel consumption was developed and validated with various experimental data from real vehicles. And then, the supervisory control logic including the control parameters was connected to the vehicle model.
Technical Paper

Modeling and Parameterization Study of Fuel Consumption and Emissions for Light Commercial Vehicles

2014-03-24
2014-01-2020
This paper describes the effects of diverse driving modes and vehicle component characteristics impact on fuel efficiency and emissions of light commercial vehicles. The AVL's vehicle and powertrain system level simulation tool (CRUISE) was adopted in this study. The main input data such as the fuel consumption & emission map were based on the experimental value and vehicle components characteristic data (full load characteristic curves, gear shifting position curves, torque conversion curve etc.) and basic specifications (gross weight, gear ratio, tire radius etc.) were used based on the database or suggested value. The test database for two diesel vehicles adopted whether prediction accuracy of simulation data were converged in acceptable range. These data had been acquired from the portable emission measurement system, the exhaust emission and operating conditions (engine speed, vehicle speed, pedal position etc.) were acquired at each time step.
Technical Paper

Real-Time Motion Classification of LiDAR Point Detection for Automated Vehicles

2020-04-14
2020-01-0703
A Light Detection And Ranging (LiDAR) is now becoming an essential sensor for an autonomous vehicle. The LiDAR provides the surrounding environment information of the vehicle in the form of a point cloud. A decision-making system of the autonomous car is able to determine a safe and comfort maneuver by utilizing the detected LiDAR point cloud. The LiDAR points on the cloud are classified as dynamic or static class depending on the movement of the object being detected. If the movement class (dynamic or static) of detected points can be provided by LiDAR, the decision-making system is able to plan the appropriate motion of the autonomous vehicle according to the movement of the object. This paper proposes a real-time process to segment the motion states of LiDAR points. The basic principle of the classification algorithm is to classify the point-wise movement of a target point cloud through the other point clouds and sensor poses.
Technical Paper

Smart Automotive Switch™ (SAS) for Improved Automotive Electronic Control Systems

2008-04-14
2008-01-1032
Electromechanical relays that are coupled with fuses have been used for controlling electrical loads in vehicles. In the past decade, semiconductor power switches have been developed for overcoming the physical limits of relays and fuses. Semiconductor power switches can not only replace relays and fuses but can also improve a system's reliability and efficiency. In this study, we introduce the Smart Automotive Switch (SAS), which is a smart high side power switch of Fairchild Korea semiconductor. Functional capabilities, such as power switching, protection and self-diagnosis of SASs are presented in case studies involving, for example, headlights, glow plugs, and fuel pump control systems. Through these experimental studies, the suitability of SASs is validated for designing improved automotive electronic control systems.
Technical Paper

Sweet Area Determination by Performance Sensitivity Analysis for an Automotive Vehicle Suspension

1991-11-01
912569
Using quarter car model, an analytic method for performance estimation of a vehicle suspension system is presented and as the variables of performance estimation, frequency response, RMS response and performance index are considered. From frequency response function, compromise of response performance to the whole frequency range is verified and from RMS response and performance index, sensitivity of ride and handling characteristics are examined. Using full car model, sweet area (stable ride area) are determined and performance sensitivity is estimated according to the change of feedback gains. In order to estimate the output sensitivity, response curve is displayed using 3-dimensional and contour plot. Design data are suggested for optimal design parameter estimation, which maximize the performance of the given suspension system.
Technical Paper

The Design of a Controller for the Steer-by-Wire System Using the Hardware-In-the-Loop-Simulation System

2002-05-07
2002-01-1596
In this study, a Steer-by-Wire (SBW) controller was developed using the Hardware-In-the-Loop-Simulation (HILS) system. The mechanism of the HILS system consists of a hydraulic actuator for a lateral force on the front tires in a real vehicle. There are two motors in the SBW system controlled by one Electronic Control Unit (ECU). One motor in the steering wheel is to improve the driver's steering feel and the other motor in the steering linkage is to improve the vehicle maneuverability. The SBW controller's availability was verified through a number of simulations on the HILS system. The SBW fail-safe logic was tested through various simulations of the hazard environment on the HILS system. Consequently, the control logic of the SBW system was developed easily and safely in a laboratory.
Journal Article

Validation of a Seamless Development Process for Real-time ECUs using OSEK-OS Based SILS/RCP

2008-04-14
2008-01-0803
An efficient development environments such as Software-in-the-Loop Simulation (SILS) and Rapid Control Prototyping (RCP) have been widely used to reduce the development time and cost of real-time ECUs. However, conventional SILS does not consider temporal behaviors caused by computation time, task scheduling, network-induced delays, and so on. As a result, the control performance of ECU is likely to be degraded after implementation. To overcome this problem, SILS/RCP which considers the temporal behaviors was suggested in the previous research. In this study, we validated the proposed SILS/RCP environments which are used to design an Electronic Stability Control (ESC) system which is one of the hard real-time control systems. The proposed SILS/RCP environments make it possible to realize ECUs in the early design phase by considering temporal behaviors.
X