Refine Your Search

Topic

Search Results

Technical Paper

A Novel Vehicle-to-Vehicle Fast Charging Control System Utilizing Motor and Inverter in EV

2022-03-29
2022-01-0170
As electric vehicles become more widespread, such vehicles may be subject to “range anxiety” due to the risk of discharging during driving or the discharging when left unused for a long period. Accordingly, a vehicle equipped with a mobile charger that can provide a charge in an emergency. The vehicle with the mobile charger is usually composed of a large capacity battery, a power converter in a small truck. However, the large capacity battery and the power converter are disadvantageous in that they are large in size and expensive and should be produced as a special vehicle. In this paper, we propose a method to solve the problem using an internal EV system without requiring an additional power generation, battery and a charging-and-discharging device. The method is a novel Vehicle-to-Vehicle (V2V) fast charging control system utilizing motor and inverter in EV.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Technical Paper

A Study of Combustion Control Parameter Optimization in a Diesel Engine Using Cylinder Pressure

2014-04-01
2014-01-1352
In diesel engine development, fuel consumption, emissions and combustion noise have been main development objectives for fuel economy, low emissions and NVH. These main objectives can be achieved with advanced engine technologies. As electronic actuating systems are widely applied on diesel engines, elaborate control is required. This is because the main development targets are greatly affected by engine control parameters but frequently have a trade-off relationship. Therefore, the optimization of combustion control parameters is one of the most challenging tasks for improvement. As an efficient method, the DOE methodology has been used in engine calibration. In order to develop a mathematical model, the input and output values must be measured. Unlike other variables, combustion noise has been continually reported to have better indication method in simplified way. In this paper, advanced noise index from cylinder pressure signal is applied on engine test.
Technical Paper

A Study of Fuel Economy Improvement on US Fuel Economy Test Cycle by Model Based Cooled HP EGR System and Robust Logic through S-FMEA

2015-04-14
2015-01-1637
This paper focuses on the vehicle test result of the US fuel economy test cycles such as FTP75, HWY and US06 with model based Cooled EGR system. Cooled EGR SW function was realized by Model Based Development (internal rapid prototyping) using iRPT tool. With EGR, mixing exhaust gas with clean air reduces the oxygen concentration in the cylinder charge, as a result, the combustion process is slowed, and the combustion temperature drops. This experiment confirmed that the spark timing was more advanced without knocking and manifold pressure was increased in all cases with EGR. A positive potential of fuel economy improvement on FTP mode, US06 mode have seen in this experiment but not for HWY where the engine load is quite low and the spark advance is already optimized. As a result, fuel economy was increased by maximum 3.3% on FTP, 2.7% on US06, decreased by 0.3% on HWY mode respectively with EGR.
Technical Paper

A Study of Ride Analysis of Medium Trucks with Varying the Characteristics of Suspension Design Parameters

1997-11-17
973230
Ride quality of medium truck became a very important factor in the suspension design, due to the demand of more comfortable ride of passengers. This study describes how to determine and evaluate design parameters related to the chassis suspension system with time and frequency analysis. The spring stiffness and damping force of the chassis suspension system were obtained by observing the vertical acceleration PSD. The simulation was carried out on various road profiles, which was suggested by ISO. The pitching motion of the medium size truck was observed to improve the ride quality. A computer simulated truck model was constructed using DADS, a commercial dynamic analysis software, in order to simulate the truck motions. From the result of the sensitivity analysis of suspension parameters, it was concluded that the spring and the shock absorbers affect the pitching of the vehicle. In order to validate the computer simulated truck model, a physical prototype was constructed and tested.
Journal Article

A Study on How to Utilize Hilly Road Information in Equivalent Consumption Minimization Strategy of FCHEVs

2014-04-01
2014-01-1827
This paper presents an adaptation method of equivalent factor in equivalent consumption minimization strategy (ECMS) of fuel cell hybrid electric vehicle (FCHEV) using hilly road information. Instantaneous optimization approach such as ECMS is one of real-time controllers. Furthermore, it is widely accepted that ECMS achieves near-optimum results with the selection of the appropriate equivalent factor. However, a lack of hilly road information no longer guarantees near-optimum results as well as charge-sustaining of ECMS under hilly road conditions. In this paper, first, an optimal control problem is formulated to derive ECMS analytical solution based on simplified models. Then, we proposed updating method of equivalent factor based on sensitivity analysis. The proposed method tries to mimic the globally optimal equivalent factor trajectory extracted from dynamic programming solutions.
Technical Paper

A Study on the Flow in the Engine Intake System

1995-09-01
952067
To design an optimum engine intake system, a flow model for the intake manifold was developed by the method of characteristics. The flow in the intake manifold was one-dimensional, and finite difference equations were derived from the governing equations of flow. The thermodynamic properties inside a cylinder were found by the first law of thermodynamics, and the boundary conditions were formulated using a steady flow model. By comparing the calculated results with experimental data, the appropriate boundary conditions and convergence limits for a flow model were established. From this model, design variables for the intake system were investigated. The optimum manifold length became shorter when the engine speed were increased. The effect of intake valve timings on inlet air mass was also studied by this model. Advancing intake valve opening decreased inlet air mass slightly, and the optimum intake valve closing was found.
Technical Paper

A Study on the Friction Characteristics of Engine Bearing and Cam/Tappet Contacts from the Measurement of Temperature and Oil Film Thickness

1995-10-01
952472
This paper discusses the effects of lubricant viscosity on the friction characteristics of engine bearing and cam/tappet which are the typical moving parts of an engine and operate in different lubrication regimes. Based on the measured crankshaft temperatures, we calculated the friction coefficient of the engine bearing according to Sommerfeld number by a simple heat equilibrium equation. The oil film thicknesses between cam and tappet were measured in a motored cylinder head which had a direct acting type overhead camshaft. The boundary and viscous friction components were estimated separately according to a parameter defined as the ratio of the central oil film thickness to the composite surface roughness. These two friction components were added to calculate the friction coefficient. Finally, the motoring friction torque was measured and compared with the estimated friction coefficient.
Technical Paper

A study on Reducing the Computing Burden of Misfire Detection using a Conditional Monitoring Method

2004-03-08
2004-01-0722
This paper presents a conditional misfire monitoring method to reduce the computing burden of the motoring. In this conditional monitoring method, the ECU performs misfire detection only when there is high probability of misfire events. The condition for performing the misfire detection is determined by the pre-index which is defined as the deviation of the segment durations of the crankshaft in this paper. The quantity of the code of calculating the pre-index is 7 times less than that of a conventional monitoring method so that the computing burden can be reduced with the conditional monitoring method. The experimental results shown that the pre-index and the conditional monitoring method are valid.
Technical Paper

Active Type Variable Intake System

2011-10-06
2011-28-0088
In this paper, an active type variable intake system is proposed, which improves both engine power and NVH performance. The proposed system uses a magnet valve to control the air path to the engine intake manifold. While other types of variable intake system such as vacuum actuator type or DC motor type need an ECU to control the valve, the proposed system only uses force equilibrium between magnetic force and vacuum pressure, resulting in weight and cost reduction. The system is composed of dual duct (duct A, duct B) and a magnet valve. In low RPM region, the magnet valve is closed and only duct A is used to supply air into the engine. In high RPM region the valve opens up and maximizes the amount of the air that goes into the engine intake manifold. The result is that the output power of the engine is maximized in high RPM region, as well as the NVH performance is improved in low RPM region.
Technical Paper

Application of High Performance Powder Metal Connecting Rod in the V6 Engine

1997-02-24
970427
Today, light connecting rods are vital to satisfying the demands of modern internal combustion engines. HYUNDAI Motor Company (HMC) has applied powder metal forged connecting rods instead of conventional hot forged connecting rods to obtain low product costs and to improve NVH characteristics and bearing reliability. Light connecting rods were developed through optimized design with high quality and low cost. Notably, the mass of a powder metal forged connecting rod is 17.7% lighter than that of a conventional hot forged type connecting rod, and its crank end is 22.5 % lighter than that of a conventional type connecting rod. Light connecting rods result in reduced crankshaft mass, so the mass of the main moving parts can be reduced. With this mass reduction, bearing reliability and NVH characteristics can be enhanced.
Technical Paper

Automatic Climate Control of the Recreation Vehicle with Dual HVAC System

2001-03-05
2001-01-0591
In this paper, we deal with the automatic climate control for Recreational Vehicle (RV). The HVAC system used for RV was composed of front side and rear side. And, the HVAC system of front side differed from that of rear side in the characteristic of HVAC system. This system was economically optimized for automatic control over 2 separated zones. The development procedure of automatic climate controller was as follows. The first stage was to derive control equation from characteristic analysis of HVAC system and the structural characteristic of vehicle interior. In the second stage, the software (S/W) was designed and programmed to operate microprocessor which calculated previously mentioned equation. Finally, the hardware (H/W) design and building were performed to operate the HVAC system with the calculation results from microprocessor. The control performance of this automatic climate control algorithm and system was evaluated by experimental method.
Technical Paper

Automatic steering control using CCD camera

2000-06-12
2000-05-0367
In this paper we present the vision system used by the autonomous intelligent vehicle to sense the surrounding environment. With the B/W CCD camera, the system is able to detect the lane marking and to localize the vehicle''s position in real time and, thanks to an electric DC motor mounted on the steering column, it can autonomously steer the vehicle. We tested the system by implementing on EF SONATA (Hyundai Motor Co.) in the test field of laboratory and verified that the steering control drove the vehicle as smoothly as a human being along both straight and curve roads with maximum 100 k/h.
Technical Paper

Available Power and Energy Prediction Using a Simplified Circuit Model of HEV Li-ion Battery

2010-04-12
2010-01-1074
Due to aging of a battery over lifetime, the rated power and nominal energy capacity will be reduced compared with the initial rated power and capacity. These result in influences on the vehicle driving performance and fuel economy. To monitor and diagnose the aging of the battery, in this paper, the method of predicting the available rated power and energy capacity of Li-ion battery under in-vehicle condition is proposed. Under constant power test, available power is calculated from the estimated parameters using recursive least square method. Further, available energy capacity is evaluated through SOH(cn) defined by the ratio of initial state-of-charge (SOC) variation to present SOC (\GdSOC ⁿ /ΔSOC ⁿ ) variation under arbitrary in-vehicle driving cycles. To verify the proposed method, experiments for aging Li-ion battery are performed in hybrid electric vehicle.
Technical Paper

Closed-Loop Control of Spark Advance and Air-Fuel Ratio in SI Engines Using Cylinder Pressure

2000-03-06
2000-01-0933
The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a control strategy of spark advance and air-fuel ratio based upon cylinder pressure for spark ignition engines. In order to extend the cylinder pressure based engine control to a wide range of engine speeds, the appropriate choice of control parameters is important as well as essential. For this control scheme, peak pressure and its location for each cylinder during every engine cycle are the major parameters for controlling the air-fuel ratio and spark timing. However, the conventional method requires the measurement of cylinder pressure at every crank angle degree to determine the peak pressure and its location. In this study, the peak pressure and its location were estimated, using a multi-layer feedforward neural network, which needs only five cylinder pressure samples at -40°, -20°, 0°, 20°, and 40° after TDC.
Technical Paper

Design for NVH Performance and Weight Reduction in Plastic Timing Chain Cover Application

2014-04-01
2014-01-1043
Light weighting is a critical objective in the automotive industry to improve fuel efficiency. But when redesigning parts for light weight, by changing from metal to plastic, the resulting design gives NVH issues due to differences in part mass and material stiffness. Many parts were not converted from metal to plastic because of NVH issues that could not be solved. Many engine parts such as cylinder head cover, air intake manifold, oil pan and etc. previously made of metal have since long been replaced with plastic. But timing chain cover has not been replaced because of the aforementioned issue. Sealing performance due to the dynamic characteristics of the application is another challenging factor. In this paper, the key aspects of the plastic timing chain cover as well as its advantage are presented.
Technical Paper

Development of 4-Cylinder 2.0L Gasoline Engine Cooling System Using 3-D CAE

2019-04-02
2019-01-0156
To satisfy the global fuel economy restrictions getting stricter, various advanced cooling concepts, like active flow control strategy, cross-flow and fast warm-up, have been applied to the engine. Recently developed Hyundai’s next generation 4-cylinder 2.0L gasoline engine, also adopts several new cooling subsystems. This paper reviews how 3-D CAE analysis has been extensively used to evaluate cooling performance effectively from concept phase to pre-production phase. In the concept stage, the coolant flow in the water jacket of cylinder head and block was investigated to find out the best one among the proposed concepts and the further improvement of flow was also done by optimizing cylinder head gasket holes. Next, 3-D temperature simulation was conducted to satisfy the development criteria in the prototype stage before making initial test engines.
Technical Paper

Development of Accelerated Reliability Testing Method for Electric Vehicle Motor and Battery System

2014-04-01
2014-01-0748
Currently, the interest in accelerated reliability testing (ART) of electric vehicles parts has been increasing. In particular, an electric motor and battery are vital components of battery powered electric vehicles. The electric motor has two major roles, to discharge or charge battery when it is driven or braking. For analyzing the exact behavior mechanism of electric motor and predicting lithium-ion battery cell degradation, new accelerated reliability testing technology is required. This paper describes the results of research and development in new approach to reliability testing for electric vehicles. The methodology to measure a precise motor output torque of the rotating rotor using telemetry system was provided. The electric energy quantities as well as the used quantities of the electric power were also analyzed. The results of research and development in new approach to reliability testing for electric vehicles were systematized and reflected in development.
Technical Paper

Development of Adaptive Powertrain Control Utilizing ADAS and GPS

2019-04-02
2019-01-0883
This paper introduces the advancement of Engine Idle Stop-and-Go (ISG, also known as Auto Engine Stop-Start) and Neutral Coasting Control (NCC) with utilizing Advanced Driver Assistance System (ADAS) and GPS. The ISG and the In-Neutral Coasting (also known as Sailing or Gliding) have been widely implemented in recent vehicles for improving their fuel economy. However, many drivers find them somewhat disturbing because they basically change behaviors of their cars from what they used to. This annoyance discourages usages of those functions and eventually undermines their benefit of fuel saving. In order to mitigate the problem, new ISG and NCC algorithms are proposed. As opposed to the conventional logics that rely only on driver’s pedal action, the new algorithms determine whether or not to enable those functions for the given driving condition, based on the traffic information obtained using ADAS sensors and the location data from GPS and navigation map.
Technical Paper

Development of Composite Body Panels for a Lightweight Vehicle

2001-03-05
2001-01-0102
Recently weight reduction is increasingly needed in automotive industry to improve fuel efficiency and to meet a CO2 emission requirement. In this paper, we prepared composite body panels for the lightweight vehicle based on a small passenger car. Fender, roof, door, side outer panel, and tailgate are made from hand layup using a glass/carbon hybrid reinforcement. Hood is made from low pressure sheet molding compound (SMC) to investigate feasibility of mass production. Both hand layup and low pressure SMC materials are newly developed and their physical properties are examined. CAE simulation was done for strength analysis and optimization of thickness for the body panels.
X