Refine Your Search

Topic

Search Results

Journal Article

A Lane-Changing Decision-Making Method for Intelligent Vehicle Based on Acceleration Field

2018-04-03
2018-01-0599
Taking full advantage of available traffic environment information, making control decisions, and then planning trajectory systematically under structured roads conditions is a critical part of intelligent vehicle. In this article, a lane-changing decision-making method for intelligent vehicle is proposed based on acceleration field. Firstly, an acceleration field related to relative velocity and relative distance was built based on the analysis of braking process, and acceleration was taken as an indicator of safety evaluation. Then, a lane-changing decision method was set up with acceleration field while considering driver’s habits, traffic efficiency and safety. Furthermore, velocity regulation was also introduced in the lane-changing decision method to make it more flexible.
Journal Article

A New Method for Bus Drivers' Economic Efficiency Assessment

2015-09-29
2015-01-2843
Transport vehicles consume a large amount of fuel with low efficiency, which is significantly affected by drivers' behaviors. An assessment system of eco-driving pattern for buses could identify the deficiencies of driver operation as well as assist transportation enterprises in driver management. This paper proposes an assessment method regarding drivers' economic efficiency, considering driving conditions. To this end, assessment indexes are extracted from driving economy theories and ranked according to their effect on fuel consumption, derived from a database of 135 buses using multiple regression. A layered structure of assessment indexes is developed with application of AHP, and the weight of each index is estimated. The driving pattern score could be calculated with these weights.
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Technical Paper

A Rolling Prediction-Based Multi-Scale Fusion Velocity Prediction Method Considering Road Slope Driving Characteristics

2023-12-20
2023-01-7063
Velocity prediction on hilly road can be applied to the energy-saving predictive control of intelligent vehicles. However, the existing methods do not deeply analyze the difference and diversity of road slope driving characteristics, which affects prediction performance of some prediction method. To further improve the prediction performance on road slope, and different road slope driving features are fully exploited and integrated with the common prediction method. A rolling prediction-based multi-scale fusion prediction considering road slope transition driving characteristics is proposed in this study. Amounts of driving data in hilly sections were collected by the advanced technology and equipment. The Markov chain model was used to construct the velocity and acceleration joint state transition characteristics under each road slope transition pair, which expresses the obvious driving difference characteristics when the road slope changes.
Technical Paper

A Study on Nonlinear Stiffness Characteristic of Air Spring for a Bus

2002-11-18
2002-01-3092
Using the nonlinear finite element analysis, three nonlinear characteristics of the rubber gasbag of the air spring on the bus are thoroughly analyzed, including the nonlinear characteristic of the rubber gasbag with multi layers of composite materials, the nonlinear large displacement geometry characteristic of the rubber gasbag on working, and the nonlinear contact characteristic of the rubber gasbag when contacts the pedestal and the top cover plate. A model is build and the nonlinear characteristic of the air spring on the bus is analyzed using the ABAQUS software. At last, the article discusses parameters that influence on the characteristic of the air spring for the bus.
Technical Paper

Architecture of iBus: A Self-Driving Bus for Public Roads

2017-03-28
2017-01-0067
Safety of buses is crucial because of the large proportion of the public transportation sector they constitute. To improve bus safety levels, especially to avoid driver error, which is a key factor in traffic accidents, we designed and implemented an intelligent bus called iBus. A robust system architecture is crucial to iBus. Thus, in this paper, a novel self-driving system architecture with improved robustness, such as to failure of hardware (including sensors and controllers), is proposed. Unlike other self-driving vehicles that operate either in manual driving mode or in self-driving mode, iBus offers a dual-control mode. More specifically, an online hot standby mechanism is incorporated to enhance the reliability of the control system, and a software monitor is implemented to ensure that all software modules function appropriately. The results of real-world road tests conducted to validate the feasibility of the overall system confirm that iBus is reliable and robust.
Technical Paper

Arrangement and Control Method of Cooperative Vehicle Platoon

2021-04-06
2021-01-0113
With the development of cellular communication technology and for the sake of reducing drag resistance, the multi-lane platoon technology will be more prosperous in the future. In this article, the cooperative vehicle platoon method on the public road is represented. The method’s architecture is mainly composed of the following parts: decision-making, path planning and control command generation. The decision-making uses the finite state machine to make decision and judgment on the cooperative lane change of vehicles, and starts to execute the lane change step when the lane change requirements are met. In terms of path planning, with the goal of ensuring comfort, the continuity of the vehicle state and no collision between vehicles, a fifth-order polynomial is used to fit every vehicle trajectory. In terms of control command generation module, a model predictive control algorithm is used to solve the multi-vehicle centralized optimization control problem.
Technical Paper

Comparative Analysis of Truck Ride Comfort of 4 Degree of Freedom Rigid-Elastic Model with 2 Degree of Freedom Rigid Model

2015-04-14
2015-01-0615
In order to study the influence of body flexibility on the truck ride comfort, a 4 DOF half vibration model of truck based on the motion synthesis between rigid body and body flexibility is established using elastic beam theory of equal section with both free ends. At the same time, a corresponding 2 DOF rigid vibration model is also built. The frequency response functions of system and response variables of two models are derived based on front wheel. The power spectral densities and the root mean square values of body acceleration, dynamic deflections and relative dynamic loads are obtained. By comparing the simulation results of rigid-elastic model and rigid model, it shows that body flexibility has a great impact on truck ride comfort and it cannot be ignored.
Technical Paper

Control Strategy of Hybrid Electric Vehicle with Double Planetary Gear Sets

2015-04-14
2015-01-1216
Hybrid Electric Vehicles with a power split system provide a variety of possibilities to promote the fuel economy of vehicles and better adapt to various driving conditions. In this paper, a new power split system of a hybrid electric bus which consists of double planetary gear sets and a clutch is introduced. The system is able to decouple both the torque and speed of the engine from the road load, which makes it possible for the engine to operate on its optimal operation line (OOL). Considering the features of the system configuration and bus driving cycle, the driving mode of the bus is divided into Electric Vehicle (EV) mode, Electric Variable Transmission (EVT) mode and Parallel mode. By controlling the engagement of the clutch at high vehicle speed (after the mechanical point), the system operates in the parallel mode rather than EVT mode. This avoids the problem that the system efficiency sharply declines in high speed region which EVT configurations are generally faced with.
Technical Paper

Coordinated Control of Continuously Variable Transmission Speed Ratio in Engine Starting-Up for Hybrid Electric Vehicle

2021-03-16
2021-01-5003
In order to improve the mode switching performance of parallel hybrid electric vehicles (PHEV) and make better use of the dynamics of the vehicle, this paper proposes a three-stage control method for the start-up mode of start-up, speed synchronization, and clutch slip based on the response characteristics of actual vehicle components and the complex working conditions of the actual road. In the speed synchronization phase, a coordinated control method of “engine speed active following + continuously variable transmission (CVT) speed ratio motor speed limiting” is proposed. The real vehicle test results show that the engine starting-up coordinated control method can significantly accelerate the speed synchronization and shorten the starting-up mode duration during the rapid acceleration, so that the vehicle’s power performance can be well played and the ride comfort can be effectively guaranteed.
Technical Paper

Design and Control of Thermal Management System for the Fuel Cell Vehicle in Low-Temperature Environment

2020-04-14
2020-01-0851
In low-temperature environment, heat supply requires considerable energy, which significantly increases energy consumption and shortens the mileage of electric vehicle. In the fuel cell vehicles, waste heat generated by the fuel cell system can supply heat for vehicle. In this paper, a thermal management system is designed for a the fuel cell interurban bus. Thermal management strategy aiming at temperature regulation for the fuel cell stack and the passenger compartment and minimal energy consumption is proposed. System model is developed and simulated based on AMESim and Matlab/Simulink co-simulation. Simulation results show that the fuel cell system can provide about 78 % energy of maximum heat requirement in -20 °C ambient temperature environment.
Technical Paper

Develop Hybrid Transit Buses for Chinese Cities1

2003-03-03
2003-01-0087
This paper summarized the first phase research work to develop hybrid transit buses for China, including driving cycle analysis, performance requirements setting, key components first dimensioning, configuration choosing, saving potential estimate and parametric study. Through these fundamental works, we realize that (1) the Chinese urban bus cycle has some specialties compared with foreign ones, and these specialties cause differences on the design criteria and design results of the hybrid buses; (2) the parallel configuration is better than the series one for the Chinese cycle from both fuel consumption and cost points of view.
Technical Paper

Effects of Sinusoidal Whole Body Vibration Frequency on Drivers' Muscle Responses

2015-04-14
2015-01-1396
Low back pain has a higher prevalence among drivers who have long term history of vehicle operations. Vehicle vibration has been considered to contribute to the onset of low back pain. However, the fundamental mechanism that relates vibration to low back pain is still not clear. Little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to determine the vibration frequency that causes the increase of muscle activity that can lead to muscle fatigue and low back pain. This study investigated the effects of various vibration frequencies on the lumbar and thoracic paraspinal muscle responses among 11 seated volunteers exposed to sinusoidal whole body vibration varying from 4Hz to 30Hz at 0.4 g of acceleration. The accelerations of the seat and the pelvis were recorded during various frequency of vibrations. Muscle activity was measured using electromyography (EMG).
Journal Article

Evaluation of a Commercial Demonstration Bus Line Utilizing Wireless Charging Technology

2017-03-28
2017-01-0651
This paper conducts an investigation on the operating cycle of Bus No. 306, which is equipped with wireless charging system, in Changsha, Hunan Province, China. The wireless charging system and electric buses are manufactured by ZTE Corporation (Zhongxing Telecommunication Equipment Corporation) and BYD Company Limited, respectively. In this paper, the operating cycle is quantified and modeled based on experimental data. The real-time bus route and SOC (state of charge) during daytime operation are recorded with the help of GPS (global position system) and BMS (battery management system). The wireless charging process is tested with a power analyzer and its charging efficiency is compared with a plug-in system. Besides, the radiation level while charging is also taken into consideration. Currently, the buses are designed to operate in daytime and get charged at night.
Technical Paper

Experimental Study on Source Identification of Bus Floor's Vibration

2014-04-01
2014-01-0014
To find out the main excitation sources of a bus floor's vibration, modal analysis and spectral analysis were respectively performed in the paper. First we tested the vibration modal of the bus's floor under the full-load condition, and the first ten natural frequencies and vibration modes were obtained for the source identification of the bus floor's vibration. Second the vibration characteristic of the bus floor was measured in an on-road experiment. The acceleration sensors were arranged on the bus's floor and the possible excitation sources of the bus, which includes engine mounting system, driveline system, exhaust system, and wheels. Then the on-road experiment was carefully conducted on a highway under the four kinds of test condition: in-situ acceleration, uniform velocity (90km/h, 100km/h, 110km/h, 120km/h), uniform acceleration with top gear, and stall sliding condition with neutral gear.
Technical Paper

Improving Light Bus Handling and Stability by Anti-roll Bar and Bushing Adjustment

2015-03-10
2015-01-0026
In order to improve the handling and stability of a light bus at high speed, a virtual model was established in Adams-Car and its anti-roll bar and bushing parameters were virtually optimized. The tyre mechanical characteristics were firstly tested by using a plate-type tyre tester and the Magic Formula parameters of the tyre were obtained. Then the virtual bus model's handling performance were studied by the simulation of central steering test and steady static circular test. An optimal matching method was put forward. By using genetic algorithm to conduct optimization, the optimised parameters were obtained. After that the anti-roll bar and bushing samples were respectively manufactured. At last, the comparative trials were performed in an automotive proving ground, and the subjective evaluation of the light bus's handling and stability was taken by three specialized assessors.
Technical Paper

Integrated Decision-Making and Planning Method for Autonomous Vehicles Based on an Improved Driving Risk Field

2023-12-31
2023-01-7112
The driving risk field model offers a feasible approach for assessing driving risks and planning safe trajectory in complex traffic scenarios. However, the conventional risk field fails to account for the vehicle size and acceleration, results in the same trajectories are generated when facing different vehicle types and unable to make safe decisions in emergency situations. Therefore, this paper firstly introduces the acceleration and vehicle size of surrounding vehicles for improving the driving risk model. Then, an integrated decision-making and planning model is proposed based on the combination of the novelty risk field and model predictive control (MPC), in which driving risk and vehicle dynamics constraints are taken into consideration. Finally, the multiple driving scenarios are designed and analyzed for validate the proposed model.
Technical Paper

Investigation of Diffuse Axonal Injury in Rats Induced by the Combined Linear and Rotational Accelerations Using Diffusion Tensor Imaging

2024-04-09
2024-01-2513
Diffuse Axonal Injury (DAI) is the most common type of traumatic brain injury, and it is associated with the linear and rotational accelerations resulting from head impacts, which often occurs in traffic related and sports accidents. To investigate the degree of influence of linear and rotational acceleration on DAI, a two-factor, two-level rat head impact experimental protocol involving linear and rotational acceleration was established using the L4(23) orthogonal table in this paper. Following the protocol, rats head was injured and diffusion tensor imaging (DTI) was performed at 24h post-injury to obtain the whole brain DAI injury, and the fractional anisotropy (FA) value of the corpus callosum was selected as the evaluation indicator. Using analysis of variance, the sum of squared deviations for the evaluation indicators was calculated to determine the degree of influence of linear acceleration and rotational acceleration on DAI. The results show that, 1.
Technical Paper

Multi-Objective Adaptive Cruise Control via Deep Reinforcement Learning

2022-03-31
2022-01-7014
This work presents a multi-objective adaptive cruise control (ACC) system via deep reinforcement learning (DRL). During the control period, it quantitatively considers three indexes: tracking accuracy, riding comfort, and fuel economy. The system balances contradictions between different indexes to achieve the best overall control results. First, a hierarchical control architecture is utilized, where the upper level controller is synthesized under DRL framework to give out the vehicle desired acceleration. The lower level controller executes the command and compensates vehicle dynamics. Then, four state variables that can comprehensively determine the car-following states are selected for better convergence. Multi-objective reward function is quantitatively designed referring to the evaluation indexes, in which safety constraints are considered by adding violation penalty. Thereafter, the training environment which excludes the disturbance of preceding car acceleration is built.
X