Refine Your Search

Topic

Search Results

Journal Article

A Lane-Changing Decision-Making Method for Intelligent Vehicle Based on Acceleration Field

2018-04-03
2018-01-0599
Taking full advantage of available traffic environment information, making control decisions, and then planning trajectory systematically under structured roads conditions is a critical part of intelligent vehicle. In this article, a lane-changing decision-making method for intelligent vehicle is proposed based on acceleration field. Firstly, an acceleration field related to relative velocity and relative distance was built based on the analysis of braking process, and acceleration was taken as an indicator of safety evaluation. Then, a lane-changing decision method was set up with acceleration field while considering driver’s habits, traffic efficiency and safety. Furthermore, velocity regulation was also introduced in the lane-changing decision method to make it more flexible.
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
Technical Paper

A Rolling Prediction-Based Multi-Scale Fusion Velocity Prediction Method Considering Road Slope Driving Characteristics

2023-12-20
2023-01-7063
Velocity prediction on hilly road can be applied to the energy-saving predictive control of intelligent vehicles. However, the existing methods do not deeply analyze the difference and diversity of road slope driving characteristics, which affects prediction performance of some prediction method. To further improve the prediction performance on road slope, and different road slope driving features are fully exploited and integrated with the common prediction method. A rolling prediction-based multi-scale fusion prediction considering road slope transition driving characteristics is proposed in this study. Amounts of driving data in hilly sections were collected by the advanced technology and equipment. The Markov chain model was used to construct the velocity and acceleration joint state transition characteristics under each road slope transition pair, which expresses the obvious driving difference characteristics when the road slope changes.
Technical Paper

A Study on Nonlinear Stiffness Characteristic of Air Spring for a Bus

2002-11-18
2002-01-3092
Using the nonlinear finite element analysis, three nonlinear characteristics of the rubber gasbag of the air spring on the bus are thoroughly analyzed, including the nonlinear characteristic of the rubber gasbag with multi layers of composite materials, the nonlinear large displacement geometry characteristic of the rubber gasbag on working, and the nonlinear contact characteristic of the rubber gasbag when contacts the pedestal and the top cover plate. A model is build and the nonlinear characteristic of the air spring on the bus is analyzed using the ABAQUS software. At last, the article discusses parameters that influence on the characteristic of the air spring for the bus.
Technical Paper

ABS Control Algorithm Based on Direct Slip Rate for Hybrid Brake System

2018-04-03
2018-01-0830
The brake-by-wire system (BBW) is better match the new energy vehicle in the future direction of development. The electro-mechanical brake (EMB) is lack of the brake failure backup and need a high 42 V voltage for the power supply. This paper presents a new brake-by-wire hybrid brake system (HBS) with the electro-hydraulic brake (EHB) equipped on the front wheels and the EMB equipped on the rear wheels. The combination of these two brake-by-wire systems has advantages of both the EHB and EMB system. The EMB on the rear wheels totally removing the rear pipes and can be simply mounted. In addition, since the need of brake torque on the rear axle is relatively small, the power supply of EMB can be reduced to 12 V. Meanwhile, the EHB on the front wheels has the failure backup function through the hydraulic line. The HBS can quickly and accurately regulate four wheels brake force of vehicles which can well meet the requirement of antilock brake system (ABS).
Technical Paper

Accurate Pressure Control Strategy of Electronic Stability Program Based on the Building Characteristics of High-Speed Switching Valve

2019-04-02
2019-01-1107
The Electronic Stability Program (ESP), as a key actuator of traditional automobile braking system, plays an important role in the development of intelligent vehicles by accurately controlling the pressure of wheels. However, the ESP is a highly nonlinear controlled object due to the changing of the working temperature, humidity, and hydraulic load. In this paper, an accurate pressure control strategy of single wheel during active braking of ESP is proposed, which doesn’t rely on the specific parameters of the hydraulic system and ESP. First, the structure and working principle of ESP have been introduced. Then, we discuss the possibility of Pulse Width Modulation (PWM) control based on the mathematical model of the high-speed switching valve. Subsequently, the pressure building characteristics of the inlet and outlet valves are analyzed by the hardware in the Loop (HiL) experimental platform.
Technical Paper

An Efficient Assistance Tool for Evaluating the Effect of Tire Characteristics on Vehicle Pull Problem

2020-04-14
2020-01-1237
The vehicle pull problem is very important to driving safety. Major factors that may cause the pull problem related to tire include variations of geometric dimension (e.g. RPK) and stiffness (e.g. cornering stiffness, aligning stiffness), plysteer and conicity. In previous research, the influencing mechanism of these factors was well studied. But in fact, vehicle pull problem caused by tire is probabilistic. When we assemble four tires onto the car, there could be 384 different assembly arrangements. If there are significant differences among these four tires, there will also be significant differences in the influence of different tire assembly schemes on vehicle pull, which has not been systematically discussed in previous studies. If we want to evaluate the pull performance of all these arrangements by vehicle test, it will be a time consuming process which will take almost 24 working days, along with a high test expense.
Technical Paper

Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control

2018-08-07
2018-01-1593
Steering movement is the most basic movement of the vehicle, in the car driving process, the driver through the steering wheel has always been to control the direction of the car, in order to achieve their own driving intention. Four Wheel Steering (4WS) is an advanced vehicle control technique which can markedly improve vehicle steering characteristics. Compared with traditional front wheel steering vehicles, 4WS vehicles can steer the front wheels and the rear wheels individually for cornering, according to the vehicle motion states such as the information of vehicle speed, yaw velocity and lateral acceleration. Therefore, 4WS can enhance the handling stability and improve the active safety for vehicles.
Technical Paper

Arrangement and Control Method of Cooperative Vehicle Platoon

2021-04-06
2021-01-0113
With the development of cellular communication technology and for the sake of reducing drag resistance, the multi-lane platoon technology will be more prosperous in the future. In this article, the cooperative vehicle platoon method on the public road is represented. The method’s architecture is mainly composed of the following parts: decision-making, path planning and control command generation. The decision-making uses the finite state machine to make decision and judgment on the cooperative lane change of vehicles, and starts to execute the lane change step when the lane change requirements are met. In terms of path planning, with the goal of ensuring comfort, the continuity of the vehicle state and no collision between vehicles, a fifth-order polynomial is used to fit every vehicle trajectory. In terms of control command generation module, a model predictive control algorithm is used to solve the multi-vehicle centralized optimization control problem.
Technical Paper

Comparative Analysis of Truck Ride Comfort of 4 Degree of Freedom Rigid-Elastic Model with 2 Degree of Freedom Rigid Model

2015-04-14
2015-01-0615
In order to study the influence of body flexibility on the truck ride comfort, a 4 DOF half vibration model of truck based on the motion synthesis between rigid body and body flexibility is established using elastic beam theory of equal section with both free ends. At the same time, a corresponding 2 DOF rigid vibration model is also built. The frequency response functions of system and response variables of two models are derived based on front wheel. The power spectral densities and the root mean square values of body acceleration, dynamic deflections and relative dynamic loads are obtained. By comparing the simulation results of rigid-elastic model and rigid model, it shows that body flexibility has a great impact on truck ride comfort and it cannot be ignored.
Technical Paper

Control Strategy of Hybrid Electric Vehicle with Double Planetary Gear Sets

2015-04-14
2015-01-1216
Hybrid Electric Vehicles with a power split system provide a variety of possibilities to promote the fuel economy of vehicles and better adapt to various driving conditions. In this paper, a new power split system of a hybrid electric bus which consists of double planetary gear sets and a clutch is introduced. The system is able to decouple both the torque and speed of the engine from the road load, which makes it possible for the engine to operate on its optimal operation line (OOL). Considering the features of the system configuration and bus driving cycle, the driving mode of the bus is divided into Electric Vehicle (EV) mode, Electric Variable Transmission (EVT) mode and Parallel mode. By controlling the engagement of the clutch at high vehicle speed (after the mechanical point), the system operates in the parallel mode rather than EVT mode. This avoids the problem that the system efficiency sharply declines in high speed region which EVT configurations are generally faced with.
Technical Paper

Coordinated Control of Continuously Variable Transmission Speed Ratio in Engine Starting-Up for Hybrid Electric Vehicle

2021-03-16
2021-01-5003
In order to improve the mode switching performance of parallel hybrid electric vehicles (PHEV) and make better use of the dynamics of the vehicle, this paper proposes a three-stage control method for the start-up mode of start-up, speed synchronization, and clutch slip based on the response characteristics of actual vehicle components and the complex working conditions of the actual road. In the speed synchronization phase, a coordinated control method of “engine speed active following + continuously variable transmission (CVT) speed ratio motor speed limiting” is proposed. The real vehicle test results show that the engine starting-up coordinated control method can significantly accelerate the speed synchronization and shorten the starting-up mode duration during the rapid acceleration, so that the vehicle’s power performance can be well played and the ride comfort can be effectively guaranteed.
Technical Paper

Design and Control of Torque Feedback Device for Driving Simulator Based on MR Fluid and Coil Spring Structure

2018-04-03
2018-01-0689
Since steering wheel torque feedback is one of the crucial factors for drivers to gain road feel and ensure driving safety, it is especially important to simulate the steering torque feedback for a driving simulator. At present, steering wheel feedback torque is mainly simulated by an electric motor with gear transmission. The torque response is typically slow, which can result in drivers’ discomfort and poor driving maneuverability. This paper presents a novel torque feedback device with magnetorheological (MR) fluid and coil spring. A phase separation control method is also proposed to control its feedback torque, including spring and damping torques respectively. The spring torque is generated by coil spring, the angle of coil spring can be adjusted by controlling a brushless DC motor. The damping torque is generated by MR fluid, the damping coefficient of MR fluid can be adjusted by controlling the current of excitation coil.
Technical Paper

Develop Hybrid Transit Buses for Chinese Cities1

2003-03-03
2003-01-0087
This paper summarized the first phase research work to develop hybrid transit buses for China, including driving cycle analysis, performance requirements setting, key components first dimensioning, configuration choosing, saving potential estimate and parametric study. Through these fundamental works, we realize that (1) the Chinese urban bus cycle has some specialties compared with foreign ones, and these specialties cause differences on the design criteria and design results of the hybrid buses; (2) the parallel configuration is better than the series one for the Chinese cycle from both fuel consumption and cost points of view.
Technical Paper

Experimental Study on Source Identification of Bus Floor's Vibration

2014-04-01
2014-01-0014
To find out the main excitation sources of a bus floor's vibration, modal analysis and spectral analysis were respectively performed in the paper. First we tested the vibration modal of the bus's floor under the full-load condition, and the first ten natural frequencies and vibration modes were obtained for the source identification of the bus floor's vibration. Second the vibration characteristic of the bus floor was measured in an on-road experiment. The acceleration sensors were arranged on the bus's floor and the possible excitation sources of the bus, which includes engine mounting system, driveline system, exhaust system, and wheels. Then the on-road experiment was carefully conducted on a highway under the four kinds of test condition: in-situ acceleration, uniform velocity (90km/h, 100km/h, 110km/h, 120km/h), uniform acceleration with top gear, and stall sliding condition with neutral gear.
Technical Paper

Generation Mechanism Analysis and Calculation Method of Loader Parasitic Power Based on Tire Radius Difference

2022-12-09
2022-01-5102
The powers generated by the skidding and slipping of a vehicle in unit time during driving are referred to as parasitic power. It has significant effects on wear on the tires, service life, and overall efficiency. However, existing methods to calculate parasitic power expressions that are not solvable in some cases, the reasonableness of the results of their calculations cannot be verified by experiments and the parameters of the loader cannot be calculated during the design of the vehicle. In this paper, we systematically analyze the mechanism of generation of parasitic power based on the differences in the radii of the tires of loaders. We innovatively propose a theoretical calculation method to calculate the wheel circumference parasitic work during the design of the loader. The results of experiments show that errors between the theoretical and experimental values of the wheel circumference parasitic work calculated under various working conditions were smaller than 5%.
Technical Paper

Hydraulic Pressure Control and Parameter Optimization of Integrated Electro-Hydraulic Brake System

2017-09-17
2017-01-2516
A general principle scheme of IEHB (Integrated Electro-Hydraulic Brake system) is proposed, and the working principle of the system is simply introduced in this paper. Considering the structure characteristics of the hydraulic control unit of the system, a kind of time-sharing control strategy is adopted to realize the purpose of independent and precise hydraulic pressure regulation of each wheel brake cylinder in various brake conditions of a vehicle. Because of the strong nonlinear and time varying characteristics of the dynamic brake pressure regulation processes of IEHB, its comprehensive brake performance is mainly affected by temperature, humidity, load change, the structure and control parameters of IEHB, and so on.
Technical Paper

Improving Light Bus Handling and Stability by Anti-roll Bar and Bushing Adjustment

2015-03-10
2015-01-0026
In order to improve the handling and stability of a light bus at high speed, a virtual model was established in Adams-Car and its anti-roll bar and bushing parameters were virtually optimized. The tyre mechanical characteristics were firstly tested by using a plate-type tyre tester and the Magic Formula parameters of the tyre were obtained. Then the virtual bus model's handling performance were studied by the simulation of central steering test and steady static circular test. An optimal matching method was put forward. By using genetic algorithm to conduct optimization, the optimised parameters were obtained. After that the anti-roll bar and bushing samples were respectively manufactured. At last, the comparative trials were performed in an automotive proving ground, and the subjective evaluation of the light bus's handling and stability was taken by three specialized assessors.
Technical Paper

Investigation of Diffuse Axonal Injury in Rats Induced by the Combined Linear and Rotational Accelerations Using Diffusion Tensor Imaging

2024-04-09
2024-01-2513
Diffuse Axonal Injury (DAI) is the most common type of traumatic brain injury, and it is associated with the linear and rotational accelerations resulting from head impacts, which often occurs in traffic related and sports accidents. To investigate the degree of influence of linear and rotational acceleration on DAI, a two-factor, two-level rat head impact experimental protocol involving linear and rotational acceleration was established using the L4(23) orthogonal table in this paper. Following the protocol, rats head was injured and diffusion tensor imaging (DTI) was performed at 24h post-injury to obtain the whole brain DAI injury, and the fractional anisotropy (FA) value of the corpus callosum was selected as the evaluation indicator. Using analysis of variance, the sum of squared deviations for the evaluation indicators was calculated to determine the degree of influence of linear acceleration and rotational acceleration on DAI. The results show that, 1.
Technical Paper

Model-Based Pneumatic Braking Force Control for the Emergency Braking System of Tractor-Semitrailer

2018-04-03
2018-01-0824
As bottom layer actuator for the AEB system, the active brake system and the brake force control of tractor-semitrailer have been the hot topics recently. In this paper, a set of active pneumatic brake system was designed based on the traditional brake system of tractor-semitrailer, which can realize the active brake of the vehicle under necessary conditions. Then, a precise mathematical model of the active pneumatic brake system was built by referring the flow characteristics of the solenoid valve, and some tests were implemented to verify the accuracy and validity of the active brake system model. Based on the model, an active pneumatic brake pressure control strategy combining the feedforward and feedback controlling modes was designed. By generating the PWM control signal, it can precisely control the desired wheel cylinder brake pressure of the active brake system. Finally, the brake pressure control strategy was validated both by simulation tests and bench tests.
X